five

RFGB|水稻基因组学数据集|植物育种数据集

收藏
国家生物信息中心2025-02-09 更新2025-03-15 收录
水稻基因组学
植物育种
下载链接:
https://rfgbv2.rmbreeding.cn/
下载链接
链接失效反馈
资源简介:
Rice Functional Genomic and Breeding (RFGB) toolkit, version 2.0 includes five major modules, which are: Phenotype, Haplotype, SNP & InDel, Restore Sequence, and Germplasm. Their functions are described with the embedded 3K-RG data as example. Four tips of iceberg for user cases of RFGB v2.0 with corresponding technical routes were presented including: 1) exploring favorable donors for higher zinc concentration in milled grains, 2) shortlisting candidate genes for grain length with near isogenic lines, 3) mining favorable haplotypes for seedling vigor traits under paddy direct seeding system, and 4) variations and restore sequence seeking for a leaf rolling QTL region.
提供机构:
Institute of Crops Sciences, Chinese Academy of Agricultural Sciences
创建时间:
2021-09-13
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

RETQA

RETQA是由北京师范大学创建的第一个大规模开放领域中文表格问答数据集,专门针对房地产领域。该数据集包含4932个表格和20762个问答对,涵盖16个子领域,涉及房产信息、房地产公司财务信息和土地拍卖信息。数据集通过从中国八个主要城市的公开数据源收集并清洗整理,每个表格都配有摘要标题以辅助检索。RETQA的创建过程包括表格收集、问答对生成、意图和槽标签注释以及查询重写和质量控制。该数据集主要用于解决房地产领域的开放域和长表格问答问题,推动表格问答技术的发展。

arXiv 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

ActivityNet Captions

The ActivityNet Captions dataset is built on ActivityNet v1.3 which includes 20k YouTube untrimmed videos with 100k caption annotations. The videos are 120 seconds long on average. Most of the videos contain over 3 annotated events with corresponding start/end time and human-written sentences, which contain 13.5 words on average. The number of videos in train/validation/test split is 10024/4926/5044, respectively.

Papers with Code 收录