car_augm|目标检测数据集|无人机数据集
收藏数据集概述
数据集名称
car_augm
数据集描述
该数据集用于改进YOLOv8的无人机画面坦克检测定位系统,专注于单一类别的目标检测,具体为“坦克”。数据集的设计旨在解决传统目标检测模型在特定环境下的局限性,尤其是在军事侦察和战场监控等应用场景中。
数据集类别
- 类别数量:1
- 类别名称:[tank]
数据集构建
数据集包含3300张图像,通过多种数据增强技术(如图像旋转、缩放、裁剪、亮度调整等)确保模型在训练过程中能够接触到丰富多样的坦克图像。图像来源广泛,涵盖不同类型的坦克及其在多种地形和环境中的表现。
数据集标注
数据集中的图像采用了精确的标注策略,确保每一张图像中的坦克目标都被准确标记。这一过程不仅提高了数据集的质量,也为后续的模型训练提供了坚实的基础。
数据集应用
通过使用该数据集,研究者期望能够显著提升YOLOv8模型在复杂环境中的坦克检测能力,为未来的军事应用提供更为精准的技术保障。

中国食物成分数据库
食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。
国家人口健康科学数据中心 收录
UIEB, U45, LSUI
本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。
github 收录
LEVIR-CD
LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。
OpenDataLab 收录
CliMedBench
CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。
arXiv 收录
UAVDT
UAVDT是一个用于目标检测任务的数据集。
github 收录