Genomic read data for Fraser Estuary in bam format
收藏aqcat25
<h1 align="center" style="font-size: 36px;"> <span style="color: #FFD700;">AQCat25 Dataset:</span> Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis </h1>  This repository contains the **AQCat25 dataset**. AQCat25-EV2 models can be accessed [here](https://huggingface.co/SandboxAQ/aqcat25-ev2). The AQCat25 dataset provides a large and diverse collection of **13.5 million** DFT calculation trajectories, encompassing approximately 5K materials and 47K intermediate-catalyst systems. It is designed to complement existing large-scale datasets by providing calculations at **higher fidelity** and including critical **spin-polarized** systems, which are essential for accurately modeling many industrially relevant catalysts. Please see our [website](https://www.sandboxaq.com/aqcat25) and [paper](https://cdn.prod.website-files.com/622a3cfaa89636b753810f04/68ffc1e7c907b6088573ba8c_AQCat25.pdf) for more details about the impact of the dataset and [models](https://huggingface.co/SandboxAQ/aqcat25-ev2). ## 1. AQCat25 Dataset Details This repository uses a hybrid approach, providing lightweight, queryable Parquet files for each split alongside compressed archives (`.tar.gz`) of the raw ASE database files. More details can be found below. ### Queryable Metadata (Parquet Files) A set of Parquet files provides a "table of contents" for the dataset. They can be loaded directly with the `datasets` library for fast browsing and filtering. Each file contains the following columns: | Column Name | Data Type | Description | Example | | :--- | :--- | :--- | :--- | | `frame_id` | string | **Unique ID for this dataset**. Formatted as `database_name::index`. | `data.0015.aselmdb::42` | | `adsorption_energy`| float | **Key Target**. The calculated adsorption energy in eV. | -1.542 | | `total_energy` | float | The raw total energy of the adslab system from DFT (in eV). | -567.123 | | `fmax` | float | The maximum force magnitude on any single atom in eV/Å. | 0.028 | | `is_spin_off` | boolean | `True` if the system is non-magnetic (VASP ISPIN=1). | `false` | | `mag` | float | The total magnetization of the system (µB). | 32.619 | | `slab_id` | string | Identifier for the clean slab structure. | `mp-1216478_001_2_False` | | `adsorbate` | string | SMILES or chemical formula of the adsorbate. | `*NH2N(CH3)2` | | `is_rerun` | boolean | `True` if the calculation is a continuation. | `false` | | `is_md` | boolean | `True` if the frame is from a molecular dynamics run. | `false` | | `sid` | string | The original system ID from the source data. | `vadslabboth_82` | | `fid` | integer | The original frame index (step number) from the source VASP calculation. | 0 | --- #### Understanding `frame_id` and `fid` | Field | Purpose | Example | | :--- | :--- | :--- | | `fid` | **Original Frame Index**: This is the step number from the original VASP relaxation (`ionic_steps`). It tells you where the frame came from in its source simulation. | `4` (the 5th frame of a specific VASP run) | | `frame_id` | **Unique Dataset Pointer**: This is a new ID created for this specific dataset. It tells you exactly which file (`data.0015.aselmdb`) and which row (`101`) to look in to find the full atomic structure. | `data.0015.aselmdb::101` | --- ## Downloadable Data Archives The full, raw data for each split is available for download in compressed `.tar.gz` archives. The table below provides direct download links. The queryable Parquet files for each split can be loaded directly using the `datasets` library as shown in the "Example Usage" section. The data currently available for download (totaling ~11.1M frames, as listed in the table below) is the initial dataset version (v1.0) released on September 10, 2025. The 13.5M frame count mentioned in our paper and the introduction includes additional data used to rebalance non-magnetic element systems and add a low-fidelity spin-on dataset. These new data splits will be added to this repository soon. | Split Name | Structures | Archive Size | Download Link | | :--- | :--- | :--- | :--- | | ***In-Domain (ID)*** | | | | | Train | `7,386,750` | `23.8 GB` | [`train_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/train_id.tar.gz) | | Validation | `254,498` | `825 MB` | [`val_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_id.tar.gz) | | Test | `260,647` | `850 MB` | [`test_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_id.tar.gz) | | Slabs | `898,530` | `2.56 GB` | [`id_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/id_slabs.tar.gz) | | ***Out-of-Distribution (OOD) Validation*** | | | | | OOD Ads (Val) | `577,368` | `1.74 GB` | [`val_ood_ads.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_ads.tar.gz) | | OOD Materials (Val) | `317,642` | `963 MB` | [`val_ood_mat.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_mat.tar.gz) | | OOD Both (Val) | `294,824` | `880 MB` | [`val_ood_both.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_both.tar.gz) | | OOD Slabs (Val) | `28,971` | `83 MB` | [`val_ood_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_slabs.tar.gz) | | ***Out-of-Distribution (OOD) Test*** | | | | | OOD Ads (Test) | `346,738` | `1.05 GB` | [`test_ood_ads.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_ads.tar.gz) | | OOD Materials (Test) | `315,931` | `993 MB` | [`test_ood_mat.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_mat.tar.gz) | | OOD Both (Test) | `355,504` | `1.1 GB` | [`test_ood_both.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_both.tar.gz) | | OOD Slabs (Test) | `35,936` | `109 MB` | [`test_ood_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_slabs.tar.gz) | --- ## 2. Dataset Usage Guide This guide outlines the recommended workflow for accessing and querying the AQCat25 dataset. ### 2.1 Initial Setup Before you begin, you need to install the necessary libraries and authenticate with Hugging Face. This is a one-time setup. ```bash pip install datasets pandas ase tqdm requests huggingface_hub ase-db-backends ``` **1. Create a Hugging Face Account:** If you don't have one, create an account at [huggingface.co](https://huggingface.co/join). **2. Create an Access Token:** Navigate to your **Settings -> Access Tokens** page or click [here](https://huggingface.co/settings/tokens). Create a new token with at least **`read`** permissions. Copy this token to your clipboard. **3. Log in via the Command Line:** Open your terminal and run the following command: ```bash hf auth login ``` ### 2.2 Get the Helper Scripts You may copy the scripts directly from this repository, or download them by running the following in your local python environment: ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="SandboxAQ/aqcat25", repo_type="dataset", allow_patterns=["scripts/*", "README.md"], local_dir="./aqcat25" ) ``` This will create a local folder named aqcat25 containing the scripts/ directory. ### 2.3 Download Desired Dataset Splits Data splits may be downloaded directly via the Hugging Face UI, or via the `download_split.py` script (found in `aqcat25/scripts/`). ```bash python aqcat25/scripts/download_split.py --split val_id ``` This will download `val_id.tar.gz` and extract it to a new folder named `aqcat_data/val_id/`. ### 2.4 Query the Dataset Use the `query_aqcat.py` script to filter the dataset and extract the specific atomic structures you need. It first queries the metadata on the Hub and then extracts the full structures from your locally downloaded files. **Example 1: Find all CO and OH structures in the test set:** ```bash python aqcat25/scripts/query_aqcat.py \ --split test_id \ --adsorbates "*CO" "*OH" \ --data-root ./aqcat_data/test_id ``` **Example 2: Find structures on metal slabs with low adsorption energy:** ```bash python aqcat25/scripts/query_aqcat.py \ --split val_ood_both \ --max-energy -2.0 \ --material-type nonmetal \ --magnetism magnetic \ --data-root ./aqcat_data/val_ood_both \ --output-file low_energy_metals.extxyz ``` **Example 3: Find CO on slabs containing both Ni AND Se with adsorption energy between -2.5 and -1.5 eV with a miller index of 011** ```bash python aqcat25/scripts/query_aqcat.py \ --split val_ood_ads \ --adsorbates "*COCH2OH" \ --min-energy -2.5 \ --max-energy -1.5 \ --contains-elements "Ni" "Se" \ --element-filter-mode all \ --facet 011 \ --data-root ./aqcat_data/val_ood_ads \ --output-file COCH2OH_on_ni_and_se.extxyz ``` --- ## 3. How to Cite If you use the AQCat25 dataset or the models in your research, please cite the following paper: ``` Omar Allam, Brook Wander, & Aayush R. Singh. (2025). AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis. arXiv preprint arXiv:XXXX.XXXXX. ``` ### BibTeX Entry ```bibtex @article{allam2025aqcat25, title={{AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis}}, author={Allam, Omar and Wander, Brook and Singh, Aayush R}, journal={arXiv preprint arXiv:2510.22938}, year={2025}, eprint={2510.22938}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci} } ```
魔搭社区 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
MIDV-500
该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。
arXiv 收录
AIS数据集
该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。
github 收录
