five

CAT-S proteomic data (searched result)|蛋白质组学数据集|疾病研究数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
蛋白质组学
疾病研究
下载链接:
https://figshare.com/articles/dataset/CAT-S_proteomic_data_searched_result_/24078444/1
下载链接
链接失效反馈
资源简介:
In situ profiling of subcellular proteomic networks in primary and living systems, such as primary cells from native tissues or clinic samples, is crucial for the understanding of life processes and diseases, yet challenging for the current proximity labeling methods (e.g., BioID, APEX) due to their necessity of genetic engineering. Here we report CAT-S, an up-to-date bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of subcellular proteomes. Powered by the newly introduced thioQM labeling warhead and targeted bioorthogonal photocatalytic decaging chemistry, CAT-S enables labeling of mitochondrial proteins in living cells with high efficiency and specificity (up to 87%). We applied CAT-S to distinct cell cultures, mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled a set of hidden mitochondrial proteins in human proteome. Furthermore, CAT-S allowed quantitative analysis of the in situ proteomic perturbations on dysfunctional tissue samples, exampled by diabetic mouse kidneys, and revealed the alterations of lipid metabolism machinery that drive the disease progression. Given the advantages of non-genetic operation, generality, efficiency as well as spatiotemporal resolution, CAT-S may open new avenues as a proximity labeling strategy for in situ investigation of subcellular proteomic landscape of primary living samples that are otherwise inaccessible.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

OMIM (Online Mendelian Inheritance in Man)

OMIM是一个包含人类基因和遗传疾病信息的在线数据库。它提供了详细的遗传疾病描述、基因定位、相关文献和临床信息。数据集内容包括疾病名称、基因名称、基因定位、遗传模式、临床特征、相关文献引用等。

www.omim.org 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录