five

CAT-S proteomic data (searched result)|蛋白质组学数据集|疾病研究数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
蛋白质组学
疾病研究
下载链接:
https://figshare.com/articles/dataset/CAT-S_proteomic_data_searched_result_/24078444/1
下载链接
链接失效反馈
资源简介:
In situ profiling of subcellular proteomic networks in primary and living systems, such as primary cells from native tissues or clinic samples, is crucial for the understanding of life processes and diseases, yet challenging for the current proximity labeling methods (e.g., BioID, APEX) due to their necessity of genetic engineering. Here we report CAT-S, an up-to-date bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of subcellular proteomes. Powered by the newly introduced thioQM labeling warhead and targeted bioorthogonal photocatalytic decaging chemistry, CAT-S enables labeling of mitochondrial proteins in living cells with high efficiency and specificity (up to 87%). We applied CAT-S to distinct cell cultures, mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled a set of hidden mitochondrial proteins in human proteome. Furthermore, CAT-S allowed quantitative analysis of the in situ proteomic perturbations on dysfunctional tissue samples, exampled by diabetic mouse kidneys, and revealed the alterations of lipid metabolism machinery that drive the disease progression. Given the advantages of non-genetic operation, generality, efficiency as well as spatiotemporal resolution, CAT-S may open new avenues as a proximity labeling strategy for in situ investigation of subcellular proteomic landscape of primary living samples that are otherwise inaccessible.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

Hang Seng Index

恒生指数(Hang Seng Index)是香港股市的主要股票市场指数,由恒生银行旗下的恒生指数有限公司编制。该指数涵盖了香港股票市场中最具代表性的50家上市公司,反映了香港股市的整体表现。

www.hsi.com.hk 收录

ArXiv

ArXiv数据集包含了来自arXiv.org的学术论文元数据,涵盖了物理学、数学、计算机科学、定量生物学、定量金融、统计学、电气工程和系统科学等多个领域的研究论文。数据集包括论文的标题、作者、摘要、提交日期、修改日期、DOI(数字对象标识符)等信息。

www.kaggle.com 收录

ZINC

ZINC 是用于虚拟筛选的商用化合物的免费数据库。 ZINC 包含超过 2.3 亿种可购买的即用型 3D 格式化合物。 ZINC 还包含超过 7.5 亿种可购买的化合物,可用于搜索类似物。

OpenDataLab 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录