five

Notebooks and calculation files for: Modeling of the 3-Coupled-Core Fiber: Comparison Between Scalar and Vector Random Coupling Models|光纤技术数据集|计算建模数据集

收藏
Mendeley Data2024-05-17 更新2024-06-30 收录
光纤技术
计算建模
下载链接:
https://zenodo.org/records/7896591
下载链接
链接失效反馈
资源简介:
The files with simulation results for JLT submission "Modeling of the 3-Coupled-Core Fiber: Comparison Between Scalar and Vector Random Coupling Modelsr". "3CCF_supermodes" file is the Mathematica code which enables to calculate supermodes (eigenvectors of M(w)) and their propagation constants of 3-coupled-core fiber (4CCF). These results are uploaded to the python notebook "3CCF_modelingJLTPaper" in order to plot them to get Fig. 3 in the paper. "TransferMatrix" is the python file with functions used for modeling, simulation and plotting. It is also uploaded in the python notebook "3CCF_modelingJLTPaper", where all the calculations for figures in the paper are presented. ! UPD 25.09.2023: There is an error in the formula of birefringence calculation. It is in the function "CouplingCoefficients" in "TransferMatrix" file. There the variable "birefringence" has to be calculated according to the formula (19) [A. Ankiewicz, A. Snyder, and X.-H. Zheng, “Coupling between parallel optical fiber cores–critical examination”, Journal of Lightwave Technology, vol. 4, no. 9,pp. 1317–1323, 1986]: (4*U**2*W*spec.k0(W)*spec.kn(2, W_)/(spec.k1(W)*V**4))*((spec.iv(1, W)/spec.k1(W))-(spec.iv(2, W)/spec.k0(W))) The correct formula gives almost the same result (the difference is 10^-5), but one has to use a correct formula anyway. P.s. In case of any questions or suggestions or if you need more explanations, you are welcome to write me an email ekader@chalmers.se. If it seems like the code does not work or mistakes in simulations are found, I also appreciate letting me know.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

医院等级评审管理系统

医院等级评审管理系统

南京数据交易平台 收录