five

CYTB_genotype_alignment

收藏
DataONE2012-11-30 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Alignment of cytochrome b sequences of all individuals used for species tree inference.
创建时间:
2012-11-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

深圳市政府数据开放平台 收录

yuvidhepe/us-accidents-updated

这是一个覆盖美国49个州的全国性交通事故数据集,数据收集自2016年2月至2023年3月,通过多种交通API实时收集。目前数据集中包含约770万条交通事故记录,可用于实时交通事故预测、热点位置研究、伤亡分析以及环境因素对事故发生的影响研究等。

hugging_face 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

TCM-Tongue

TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。

arXiv 收录