five

Data from: A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example|海洋生态学数据集|鱼类生长数据集

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
海洋生态学
鱼类生长
下载链接:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.q9h64
下载链接
链接失效反馈
资源简介:
environmental dataEnvironmental covariates used in the analysis of inter-annual growth variation. Year: 1 Jan – 31 Dec. Area: fishing area (see figure 1). Centlat: central latitude of fishing area. Centlong: central longitude of fishing area. Bottomtemp: annual average bottom temperature (oC) for each fishing area based on SynTS and HadISST data sets. See appendix B for methodological details. CPUE: annual average catch per unit effort (CPUE) for each fishing area. See appendix B for methodological details.increment averagesTable of otolith increment measurements averaged by age and year for each fishing area. Area: fishing area. Year: 1 Jan – 31 Dec. Age1- Age18: fish ages.incrmement measurementsRaw increment measurements and biological data for 4318 (of 6143) fish from fishing areas EBS and ETAS. This subset represents ~74% of increment data used in analyses. The full data set has not been published as it underpins commercially sensitive stock assessments and is held by CSIRO in confidence on behalf of AFMA. Requests for the full data set will be considered on a case by case basis and must be directed to Dr David Smith, Research Director Marine Resources & Industries, CSIRO Oceans & Atmosphere Flagship. David(dot)C(dot)Smith(at)csiro(dot)au. Area: fishing area; FishID: unique identifier for each individual; Sex: M or F; Gear:otter trawl (OT), Danish seine (DS) or unknown; Capyear: capture year; Capmonth: capture month; Floorlength: fish length (cm) rounded down to the nearest whole number; AdjAge: adjusted fish age, based on increment count, otolith edge type, date of capture and the species’ nominal birthday (1 Jan). This is the age-at-capture variable in the paper, and is a fish’s age in whole years; DeciAge: decimal age based on date of capture in relation to birth date; Radius: otolith radius along measuring transect in mm; YOB: year of birth, or year class. Year: calendar year in which a given increment was deposited; Age: age in years corresponding to a given increment; Increment: width of otolith annuli in mmtiger flathead biochronologiesSheet 1: Estimated annual average growth tiger flathead for each fishing area (figure 4a-g & figure 5). Sheet 2: estimated cohort specific growth for each fishing area (figure 4h-n). Year: 1 Jan – 31 Dec. Area: fishing area (see figure 1). Bottomtemp: annual average bottom temperature (oC) for each fishing area. See appendix B for methodological details. annualgrowth: estimate of annual average growth (in mm) derived from model BLUPs. cohortgrowth: estimate of cohort-specific growth (in mm) derived from model BLUPs. SE: standard error.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

COD10KD, NC4K-D, CAMO-D

该数据集由华中科技大学的研究团队创建,旨在为现实中的伪装物体检测(RCOD)任务提供基准测试。数据集基于现有的COD10K-v2、NC4K和CAMO数据集,通过手动标注边界框和类别标签,生成了COD10KD、NC4K-D和CAMO-D三个新的数据集。这些数据集包含了伪装物体与其背景高度相似的特征,适用于检测任务的评估。数据集的应用领域主要集中在搜索与救援、军事打击等需要精确定位伪装物体的场景,旨在通过优化检测模型的前景与背景识别能力,提升RCOD任务的性能。

arXiv 收录

PetFace

PetFace数据集由京都大学和日本东京大学联合创建,是一个大规模的动物面部识别数据集,包含257,484个独特的个体,跨越13个动物家族和319个品种类别。数据集包含1,012,934张图像,通过互联网自动和手动过滤过程收集,确保数据集不仅规模大,而且细节丰富且清洁。数据集提供了包括性别、品种、颜色和图案在内的细粒度注释,支持对已知和未知个体的识别。PetFace数据集的应用领域包括动物行为监测、栖息地调查和失踪动物寻找,旨在推动非侵入性动物自动识别方法的发展。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

HDFS, BGL, Liberty, Thunderbird

该仓库包含四个数据集:HDFS、BGL、Liberty和Thunderbird。这些数据集用于基于日志的异常检测实验,每个数据集都提供了日志消息数量、日志序列数量、训练和测试数据中的异常数量及异常比例等详细统计信息。

github 收录