Subduction Reversal and the Ontong Java Plateau|地震学数据集|地质研究数据集
收藏Electrical-Lines-Defect-Detection
该数据集是针对电力线路缺陷检测的,包含了由APEPDCL线路工人使用移动相机捕获的图片,并由Sampath Balaji团队整理。数据集以CC BY 4.0许可证发布,旨在促进开源合作、可重现性和人工智能的实践学习。数据集分为两个模块:目标检测和分类。目标检测模块遵循YOLOv12格式,分类模块由文件夹和CSV文件组成,都提供了训练、验证和测试数据集。
huggingface 收录
O*NET
O*NET(Occupational Information Network)是一个综合性的职业信息数据库,提供了关于各种职业的详细描述,包括技能要求、工作活动、知识领域、工作环境等。该数据集被广泛用于职业分析、教育和劳动力市场研究。
www.onetonline.org 收录
Hospital Deterioration Dataset
这是一个高保真模拟医院队列数据集,包含10,000个模拟医院入院记录,每个记录跟踪最多72小时。数据集提供每小时的生命体征(心率、血压、呼吸频率等)和实验室数值(白细胞计数、乳酸、肌酐等),以及患者人口统计学信息和多种恶化结果标签。专门设计用于构建和基准测试早期预警系统和临床恶化风险模型的机器学习应用。
github 收录
PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
TPTP
TPTP(Thousands of Problems for Theorem Provers)是一个包含大量逻辑问题的数据集,主要用于定理证明器的测试和评估。它包含了多种逻辑形式的问题,如一阶逻辑、高阶逻辑、命题逻辑等。
www.tptp.org 收录
