five

Data from: Egg morphology fails to identify nests parasitized by conspecifics in common pochard: a test based on protein fingerprinting and including female relatedness

收藏
DataONE2016-06-15 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Conspecific brood parasites lay eggs in nests of other females of the same species. A variety of methods have been developed and used to detect conspecific brood parasitism (CBP). Traditional methods may be inaccurate in detecting CBP and in revealing its true frequency. On the other hand more accurate molecular methods are expensive and time consuming. Eadie developed a method for revealing CBP based on differences in egg morphology. That method is based on Euclidean distances calculated for pairs of eggs within a clutch using standardized egg measurements (length, width and weight). We tested the applicability of this method in the common pochard Aythya ferina using nests that were identified as parasitized (39 nests) or non-parasitized (16 nests) based on protein fingerprinting of eggs. We also analyzed whether we can distinguish between parasitic and host eggs in the nest. We found that variation in MED can be explained by parasitism but there was a huge overlap in MED between parasitized and non-parasitized nests. MED also increased with clutch size. Using discriminant function analysis (DFA) we found that only 76.4% of nests were correctly assigned as parasitized or nonparasitized and only 68.3% of eggs as parasitic or host eggs. Moreover we found that MED in parasitized nests increased with relatedness of the females that laid eggs in the nest. This finding was supported by positive correlation between MED and estimated relatedness in female–female pairs. Although variation in egg morphology is associated with CBP, it does not provide a reliable clue for distinguishing parasitized nests from non-parasitized nests in common pochard.
创建时间:
2016-06-15
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ICLR Peer Review and Rebuttal Process Dataset

该数据集包含从ICLR 2024和2025年收集的同行评审和反驳过程数据,数据来自OpenReview平台,包括评审者ID、初始评分和反驳后评分。评审者评分变化被追踪,使用追踪分数指标来评估评审者连续性,分数≤1表示有效使用,≥2需双重检查。数据许可证为CC BY 4.0。

github 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录

Weibo Dataset

V1版本包含了2023年上半年来自微博平台的2,106条新闻数据。其中包含1,000条假新闻和1,067条真实新闻。数据集包含新闻传播的评论数据,包含用户和评论信息。V2版本包含了来自中国微博社交媒体平台的11,329条新闻。其中包含5,661条假新闻和5,668条真实新闻。与V1版本相比,V2版本在V1的基础上扩大了数据量。同时,V2提供了新闻的多模态数据,包括新闻帖子、评论集合、图片、视频和声音信息。因此,V2提供了更真实的社交网络环境模拟,从而支持下游任务。

github 收录