five

Data from: Antibodies and coinfection drive variation in nematode burdens in wild mice

收藏
DataONE2018-06-21 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Coinfections with parasitic helminths and microparasites are highly common in nature and can lead to complex within-host interactions between parasite species which can cause negative health outcomes for humans, and domestic and wild animals. Many of these negative health effects worsen with increasing parasite burdens. However, even though many studies have identified several key factors that determine worm burdens across various host systems, less is known about how the immune response interacts with these factors and what the consequences are for the outcome of within-host parasite interactions. We investigated two interacting gastrointestinal parasites of wild wood mice, Heligmosomoides polygyrus (nematode) and Eimeria spp. (coccidia), in order to investigate how host demographic factors, coinfection and the host´s immune response affected parasite burdens and infection probability, and to determine what factors predict parasite-specific and total antibody levels. We found that antibody levels were the only factors that significantly influenced variation in both H. polygyrus burden and infection probability, and Eimeria spp. infection probability. Total faecal IgA was negatively associated with H. polygyrus burden and Eimeria spp. infection, whereas H. polygyrus-specific IgG1 was positively associated with H. polygyrus infection. We further found that the presence of Eimeria spp. had a negative effect on both faecal IgA and H. polygyrus-specific IgG1. Our results show that even in the context of natural demographic and immunological variation amongst individuals, we were able to decipher a role for the host humoral immune response in shaping the within-host interaction between H. polygyrus and Eimeria spp.
创建时间:
2018-06-21
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

Crop Yield Prediction Dataset

Impact of Environmental Factors on Crop Yields Across Countries

kaggle 收录

中国30m土地利用数据集(1990-2020年)

数据以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的中国国家尺度多时期土地利用/土地覆盖专题数据库数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型

国家地球系统科学数据中心 收录

QM9

该数据集名为QM9,包含了134,000个分子的信息,可用于生成点云的建模工作,同时也可应用于分子动力学的研究以及点云生成任务中。

arXiv 收录

IRSTD-1k

最大的逼真红外小目标检测数据集,由1,001个手动标记的逼真图像组成,这些图像具有各种目标形状,不同的目标大小以及来自不同场景的丰富杂波背景。

OpenDataLab 收录