five

Optimising Plant Establishment 2020 Inverleigh Faba Bean Experiment|农业试验数据集|作物种植数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
农业试验
作物种植
下载链接:
https://adelaide.figshare.com/articles/dataset/Optimising_Plant_Establishment_2020_Inverleigh_Faba_Bean_Experiment/24784329/1
下载链接
链接失效反馈
资源简介:
Data from the 2020 crop establishment trial at Inverleigh, VIC. The trial compared the establishment of Samira faba bean at different target densities, under a conventional seeder (Vaderstad Rapid) and under a precision seeder (Vaderstad Tempo). The experiment was run under the UOA1803-009RTX GRDC research project led by the University of Adelaide, with the experimental trial and data collection managed locally by Southern Farming Systems (SFS).Files:2020 SFS faba bean .xlsxExperiment setup:Experiment managed locally by Southern Farming Systems (SFS). The trial was set up as a randomised complete block design with four treatments (conventional seeder vs precision seeder, and target plant densities at 20 and 40 plants/m2), arranged spatially in a single column with 12 rows, 3 replicates, 12 plots total. Note that the row spacing for the treatment with the Tempo precision seeder at 40 plants/m2 was erroneously increased to 500mm instead of 250mm for only two of the replicates. Samira faba bean was the variety sown for this trial.Variables recorded:establishment count (plants/m2), interplant distance (cm), peak biomass wet weight (g), peak biomass dry weight (g), peak biomass moisture (%), peak biomass (t/ha), harvest biomass wet weight (g), harvest biomass dry weight (g), harvest biomass moisture (%), harvest index, corrected yield at 14% moisture (t/ha)Data collection and assessment:The faba bean was sown on 08/05/2020. Establishment counts were made for 1 row over 3m lengths on 25/05/2020, 29/05/2020, and 01/06/2020, with a final establishment count and interplant distance (in cm) also recorded for each of the plots. Peak biomass and harvest biomass cuts were made to assess wet weight, dry weight and moisture content. At harvest the yield was recorded, corrected to 14% moisture (t/ha).
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Allen Brain Atlas

Allen Brain Atlas 是一个综合性的脑图谱数据库,提供了详细的大脑解剖结构、基因表达数据、神经元连接信息等。该数据集包括了小鼠、人类和其他模式生物的大脑数据,旨在帮助研究人员理解大脑的结构和功能。

portal.brain-map.org 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

猫狗分类

## 数据集描述 ### 数据集简介 本数据集是简单的猫狗二分类数据集,共2个类别,其中训练集包含275张带注释的图像,验证集包含70张带注释的图像。整个数据集共10.3MB,可用于快速模型验证、性能评估、小数据集训练等。 ### 数据集支持的任务 可用于快速模型验证、性能评估、小数据集训练等。 ## 数据集的格式和结构 ### 数据格式 数据集包括训练集train和验证集val,train和val文件夹之下按文件夹进行分类,共有2个子文件夹,同类别标签的图片在同一个文件夹下,图片格式为JPG。同时包含与标注文件中label id相对应的类名文件classname.txt。 ### 数据集加载方式 ```python from modelscope.msdatasets import MsDataset from modelscope.utils.constant import DownloadMode ms_train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') # 加载训练集 print(next(iter(ms_train_dataset))) ms_val_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') # 加载验证集 print(next(iter(ms_val_dataset))) ``` ### 数据分片 本数据集包含train和val数据集。 | 子数据集 | train | val | test | |---------|-------------:|-----------:|---------:| | default | 训练集 | 验证集 | / | ### Clone with HTTP ```bash git clone https://www.modelscope.cn/datasets/tany0699/cats_and_dogs.git ```

魔搭社区 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录