five

Data from: When homoplasy is not homoplasy: dissecting trait evolution by contrasting composite and reductive coding

收藏
DataONE2017-06-07 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
The conceptualization and coding of characters is a difficult issue in phylogenetic systematics, no matter which inference method is used when reconstructing phylogenetic trees or if the characters are just mapped onto a specific tree. Complex characters are groups of features that can be divided into simpler hierarchical characters (reductive coding), although the implied hierarchical relational information may change depending on the type of coding (composite vs reductive). Up to now, there is no common agreement to either code characters as complex or simple. Phylogeneticists have discussed which coding method is best, but have not incorporated the heuristic process of reciprocal illumination to evaluate the coding. Composite coding allows to test 1) if several characters were linked resulting in a structure described as a complex character or trait, or 2) if independently evolving characters resulted in the configuration incorrectly interpreted as a complex character. We propose that complex characters or character states should be decomposed iteratively into simpler characters when the original homology hypothesis is not corroborated by a phylogenetic analysis, and the character or character state is retrieved as homoplastic. We tested this approach using the case of fruit types within subfamily Cinchonoideae (Rubiaceae). The iterative reductive coding of characters associated to drupes allowed us to unthread fruit evolution within Cinchonoideae. Our results show that drupes and berries are not homologous. As a consequence, a more precise ontology for the Cinchonoideae drupes is required.
创建时间:
2017-06-07
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

GLUCOBENCH

GLUCOBENCH是由德克萨斯A&M大学统计系和电气与计算机工程系共同创建的一个综合数据集,旨在为连续血糖监测(CGM)数据的预测模型提供标准化的评估平台。该数据集包含五个公开的CGM数据集,涵盖不同规模和人口特征,数据量从5个到超过200个患者不等。数据集的创建过程包括数据预处理、插值和分割,确保数据质量。GLUCOBENCH主要应用于糖尿病管理领域,旨在通过提高血糖轨迹预测的准确性和不确定性量化,改善糖尿病患者的治疗效果和自主管理能力。

arXiv 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录