five

Data from: Spatial variation buffers temporal fluctuations in early juvenile survival for an endangered Pacific salmon

收藏
DataONE2013-08-07 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
1. Spatial, phenotypic, and genetic diversity at relatively small scales can buffer species against large-scale processes such as climate change that tend to synchronize populations and increase temporal variability in overall abundance or production. This portfolio effect generally results in improved biological and economic outcomes for managed species. Previous evidence for the portfolio effect in salmonids has arisen from examinations of time series of adult abundance, but we lack evidence of spatial buffering of temporal variability in demographic rates such as survival of juveniles during their first year of life. 2. We therefore use density-dependent population models with multiple random effects to represent synchronous (similar among populations) and asynchronous (different among populations) temporal variability as well as spatial variability in survival. These are fitted to 25 years of survey data for breeding adults and surviving juveniles from 15 demographically distinct populations of Chinook salmon (Oncorhynchus tshawytscha) within a single metapopulation in the Snake River in Idaho, USA. 3. Model selection identifies the most support for the model that included both synchronous and asynchronous temporal variability, in addition to spatial variability. Asynchronous variability (log-SD = 0.55) is approximately equal in magnitude to synchronous temporal variability (log-SD = 0.67), but much lower than spatial variability (log-SD = 1.11). We also show that the pairwise correlation coefficient, a common measure of population synchrony, is approximated by the estimated ratio of shared and total variance, where both approaches yield a synchrony estimate of 0.59. We therefore find evidence for spatial buffering of temporal variability in early juvenile survival, although between-population variability that persists over time is also large. 4. We conclude that spatial variability decreases interannual changes in overall juvenile production, which suggests that conservation and restoration of spatial diversity will improve population persistence for this metapopulation. However, the exact magnitude of spatial buffering depends upon demographic parameters such as adult survival that may vary among populations, and is proposed as an area of future research using hierarchical life cycle models. We recommend that future sampling of this metapopulation employ a repeated-measure sampling design to improve estimation of early juvenile carrying capacity.
创建时间:
2013-08-07
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Amazon电影评论数据集

该数据集包含从1997年8月至2012年10月期间,Amazon用户对253,059种产品的7,911,684条评论。数据集被添加了真实标签,这些标签是通过爬取/抓取Amazon.com获得的,用于分类产品。

github 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

QM9

该数据集名为QM9,包含了134,000个分子的信息,可用于生成点云的建模工作,同时也可应用于分子动力学的研究以及点云生成任务中。

arXiv 收录

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录