five

Data from: Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida

收藏
DataONE2018-01-29 更新2024-06-25 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatchlings from their nests (n= 989) using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.
创建时间:
2018-01-29
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

MIMII数据集

MIMII数据集是由日立有限公司研究与开发集团创建的,专注于工业机器异常声音检测的数据集。该数据集包含26,092个正常操作条件下的声音文件,涵盖阀门、泵、风扇和滑轨四种机器类型。数据集的创建过程中,使用了TAMAGO-03麦克风阵列进行声音采集,并在多个真实工厂环境中混合背景噪声以模拟实际环境。MIMII数据集主要用于机器学习和信号处理社区开发自动化设施维护系统,特别是在无监督学习场景下检测机器异常声音。

arXiv 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

cifar10

该数据集包含了完整的CIFAR10数据集,通过PyTorch下载并分割成.png格式的32x32图片。数据集分为三个部分:训练集(train,49,000个样本)、校准集(calibration,1,000个样本)和测试集(test,10,000个样本),每个部分按类别平衡。

huggingface 收录