five

Data from: Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida

收藏
DataONE2018-01-29 更新2024-06-25 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatchlings from their nests (n= 989) using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.
创建时间:
2018-01-29
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

Fruits-360

一个高质量的水果图像数据集,包含多种水果的图像,如苹果、香蕉、樱桃等,总计42345张图片,分为训练集和验证集,共有64个水果类别。

github 收录

维基百科(wiki2019zh)

维基百科json版包含104万个词条,可作为通用中文语料,用于预训练的语料或构建词向量,也可用于构建知识问答。

github 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录