five

Timdb/AE4317-cyberzoo-tudelft|无人机数据集|图像识别数据集

收藏
hugging_face2024-04-29 更新2024-06-12 收录
无人机
图像识别
下载链接:
https://hf-mirror.com/datasets/Timdb/AE4317-cyberzoo-tudelft
下载链接
链接失效反馈
资源简介:
该数据集包含在代尔夫特理工大学Cyberzoo飞机大厅拍摄的图像,其中82%为真实图像,18%为模拟器图像。数据集通过多次测试会话收集,包括实际飞行和手持拍摄。数据标注使用了单目深度图生成工具Depth-Anything,具体标注过程在提供的链接中有详细说明。数据集可用于训练卷积神经网络,用于代尔夫特理工大学Cyberzoo中微型飞行器的避障。数据集结构包括训练集(占数据的90%)和测试集(占数据的10%),每个图像都有嵌入的元数据标签,指示无人机应旋转或飞行的方向。

该数据集包含在代尔夫特理工大学Cyberzoo飞机大厅拍摄的图像,其中82%为真实图像,18%为模拟器图像。数据集通过多次测试会话收集,包括实际飞行和手持拍摄。数据标注使用了单目深度图生成工具Depth-Anything,具体标注过程在提供的链接中有详细说明。数据集可用于训练卷积神经网络,用于代尔夫特理工大学Cyberzoo中微型飞行器的避障。数据集结构包括训练集(占数据的90%)和测试集(占数据的10%),每个图像都有嵌入的元数据标签,指示无人机应旋转或飞行的方向。
提供机构:
Timdb
原始信息汇总

数据集概述

数据集信息

  • 大小分类: 10K<n<100K
  • 数据集大小: 622057858.415 字节
  • 下载大小: 618329781 字节

特征

  • image: 图像类型
  • left: 整数类型
  • forward: 整数类型
  • right: 整数类型

分割

  • 训练集:
    • 示例数量: 12489
    • 字节数: 561073580.031
  • 测试集:
    • 示例数量: 1388
    • 字节数: 60984278.384

配置

  • 默认配置:
    • 训练集路径: data/train-*
    • 测试集路径: data/test-*

数据集结构

  • 训练集占比: 90%
  • 测试集占比: 10%
  • 标签: "left", "forward", "right"
AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集由Delft University of Technology的Cyberzoo环境中采集的图像构成,涵盖了实际飞行和手持拍摄的多种测试场景。数据集包括82%的真实图像和18%的模拟器图像。标签生成采用单目深度图技术,通过[Depth-Anything](https://github.com/LiheYoung/Depth-Anything)工具实现,具体标签过程详见[此笔记本](https://github.com/Timdnb/CNN-for-Micro-Air-Vehicles/blob/main/Dataset_generation.ipynb)。
特点
数据集的显著特点在于其图像来源的多样性,结合了真实环境和模拟器生成的图像,确保了训练模型的广泛适用性。此外,数据集的标签精细且明确,包括'left'、'forward'和'right'三个方向标签,为无人机避障任务提供了精确的指导信息。
使用方法
该数据集主要用于训练卷积神经网络,以实现Delft University of Technology的Cyberzoo环境中微型飞行器的障碍物规避。用户可通过访问[此仓库](https://github.com/Timdnb/CNN-for-Micro-Air-Vehicles)获取完整的训练流程。数据集结构包括90%的训练集和10%的测试集,每张图像的标签嵌入在元数据中,便于直接用于模型训练和评估。
背景与挑战
背景概述
在无人机技术迅速发展的背景下,Delft University of Technology的Cyberzoo实验室致力于微型飞行器(Micro Air Vehicles, MAVs)的障碍规避研究。Timdb/AE4317-cyberzoo-tudelft数据集由Tim den Blanken主导创建,旨在为训练卷积神经网络(CNN)提供高质量的图像数据。该数据集包含了在Cyberzoo内实际飞行和手持拍摄的图像,其中82%为真实图像,18%为模拟器图像。通过使用单目深度图进行数据标注,该数据集为MAVs在复杂环境中的自主导航提供了宝贵的资源。
当前挑战
该数据集在构建过程中面临的主要挑战包括:1) 数据标注的准确性,依赖于单目深度图的生成,这要求高精度的图像处理技术;2) 数据集的平衡性,确保训练集和测试集的分布合理,以避免模型过拟合或欠拟合。此外,数据集的应用场景——MAVs的障碍规避,本身就是一个复杂且动态变化的领域问题,要求模型具备高度的实时性和鲁棒性。
常用场景
经典使用场景
在航空工程领域,Timdb/AE4317-cyberzoo-tudelft数据集被广泛应用于训练卷积神经网络(CNN),以实现微型飞行器(MAV)在Delft理工大学Cyberzoo中的障碍物规避。该数据集通过结合实际飞行和手持拍摄的图像,为模型提供了丰富的视觉输入,从而提升了其在复杂环境中的导航能力。
衍生相关工作
基于Timdb/AE4317-cyberzoo-tudelft数据集,研究人员开发了多种先进的深度学习模型,用于微型飞行器的自主导航和障碍物规避。例如,一些研究团队利用该数据集训练了多模态融合模型,结合视觉和惯性传感器数据,进一步提升了飞行器的导航精度。此外,该数据集还激发了其他相关领域的研究,如图像处理和计算机视觉,推动了整个航空工程领域的技术进步。
数据集最近研究
最新研究方向
在无人机自主导航与避障领域,Timdb/AE4317-cyberzoo-tudelft数据集因其独特的图像数据和精细的标注而备受关注。该数据集不仅包含了实际飞行中的图像,还融入了模拟器生成的图像,为研究者提供了丰富的数据资源。当前,该数据集的前沿研究主要集中在利用卷积神经网络(CNN)进行微型飞行器(MAV)的障碍物规避。通过结合深度学习技术,研究者们致力于提升无人机在复杂环境中的自主导航能力,这对于无人机在实际应用中的安全性和可靠性具有重要意义。此外,该数据集的标注过程采用了单目深度图生成技术,进一步提升了数据的质量和应用价值。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录