东莞市危险化学品安全使用许可证核发(新领)办件结果公示信息|危险化学品管理数据集|政务服务数据集
收藏Materials Project 在线材料数据库
Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。
超神经 收录
UAVDT
UAVDT是一个用于目标检测任务的数据集。
github 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
HotpotQA
HotpotQA 是收集在英语维基百科上的问答数据集,包含大约 113K 众包问题,这些问题的构建需要两篇维基百科文章的介绍段落才能回答。数据集中的每个问题都带有两个黄金段落,以及这些段落中的句子列表,众包工作人员认为这些句子是回答问题所必需的支持事实。 HotpotQA 提供了多种推理策略,包括涉及问题中缺失实体的问题、交叉问题(什么满足属性 A 和属性 B?)和比较问题,其中两个实体通过一个共同属性进行比较等。在少文档干扰设置中,QA 模型有 10 个段落,保证能找到黄金段落;在开放域全维基设置中,模型只给出问题和整个维基百科。模型根据其答案准确性和可解释性进行评估,其中前者被测量为具有完全匹配 (EM) 和 unigram F1 的预测答案和黄金答案之间的重叠,后者关注预测的支持事实句子与人类注释的匹配程度(Supporting Fact EM/F1)。该数据集还报告了一个联合指标,它鼓励系统同时在两项任务上表现良好。 来源:通过迭代查询生成回答复杂的开放域问题
OpenDataLab 收录
M3FD
我们用校准良好的红外和光学传感器构建了一个同步成像系统,并收集了一个多场景多模态数据集 (M3FD),其中包括4个,177个对准的红外和可见光图像对以及23个,635个带注释的对象。该数据集涵盖了具有各种环境,照明,季节和天气的四个主要场景,具有广泛的像素变化范围。
OpenDataLab 收录