five

Data from: Angelfishes, paper tigers and the devilish taxonomy of the Centropyge flavissima complex

收藏
DataONE2016-09-12 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
The pygmy angelfishes (genus Centropyge) provide numerous examples of discordance between color morphology, taxonomy and evolutionary genetic lineages. This discordance is especially evident in the Centropyge flavissima complex, which includes three primary color morphs, three previously recognized species (C. flavissima, C. eibli and C. vrolikii) and three distinct mitochondrial (mtDNA) lineages that do not align with species designations. Our previous research showed that the putative C. flavissima arose independently in the Indian and Pacific Oceans, and the three mtDNA lineages align with geography rather than species assignments. Here we add 157 specimens to the previous dataset of 291 specimens, spread across a greater geographic range, to pinpoint the distribution of mtDNA lineages and color morphs. We found that the mtDNA lineages show remarkably strong geographic boundaries corresponding to the Indian Ocean, Central-West Pacific and Central-South Pacific. We also test the validity of the ‘Black Tiger Centropyge’ in the C. flavissima species complex, a taxonomic oddity that is restricted to shoals and atolls off the coast of northwestern Australia, and the newly named C. cocosensis assigned to the C. flavissima lineage in the Indian Ocean. We conclude that the Black Tiger Centropyge is not a valid species but an intermediate between sympatric color morphs (C. eibli and C. vrolikii). Our greater sampling efforts also do not support the genetic distinctiveness of C. cocosensis given shared mtDNA haplotypes with the sympatric C. eibli and C. vrolikii, but instead we find conflicting lines of evidence concerning the taxonomy of this group.
创建时间:
2016-09-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

MineNetCD

MineNetCD数据集由慕尼黑工业大学等机构创建,是一个全球矿区变化检测的综合基准数据集。该数据集包含超过70k对的双时相高分辨率遥感图像,覆盖全球100个矿区,总面积约6756.88平方公里。数据集的创建过程结合了半自动标注和专家手动标注,确保了数据的精细度和准确性。MineNetCD数据集主要应用于矿区环境监测和可持续发展研究,旨在通过高精度的变化检测技术,帮助实现矿区的可持续管理和环境保护。

arXiv 收录

fruits_weight

该数据集用于训练和改进YOLOv8-seg模型,用于水果成熟度的识别与分割。数据集包含12个类别,涵盖了从生鲜水果到成熟水果的不同阶段,具体类别包括:生芒果(Raw_Mango)、熟芒果(Ripe_Mango)、熟葡萄(ripe grape)、熟苹果(ripe_apple)、熟橙子(ripe_orange)、熟石榴(ripe_pomegranate)、半熟葡萄(semiripe grape)、半熟苹果(semiripe_apple)、未熟葡萄(unripe grape)、未熟苹果(unripe_apple)、未熟橙子(unripe_orange)和未熟石榴(unripe_pomegranate)。数据集的丰富性和多样性使其成为训练水果成熟度识别模型的理想选择。

github 收录