raw_miseq_data_4
收藏flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
Employee Performance Dataset
该数据集包含新员工的实际表现数据,包括人口统计信息和测试分数。它作为高级线性代数在机器学习中的应用课程作业的基础资源,用于编写机器学习代码。
github 收录
CE-CSL
CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。
arXiv 收录
DIV2K
displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}
魔搭社区 收录
鱼类目标检测数据集
本数据集专为改进YOLOv8的鱼类目标检测系统而设计,包含了丰富的鱼类图像数据,旨在为研究人员和开发者提供一个高质量的训练基础。数据集的总图像数量达到了7480张,涵盖了30个不同的鱼类类别,展现了水生生态系统的多样性和复杂性。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。
github 收录
