five

Data from: DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics

收藏
DataONE2013-09-26 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Higher taxa often show increasing species richness towards tropical low latitudes, a pattern known as the latitudinal biodiversity gradient (LBG). A rare reverse LBG (with greater richness towards temperate high latitudes) is exhibited by Gracillariidae leaf-mining moths, in which most described species occur in northern temperate areas. We carried out the first assessment of gracillariid species diversity in two Neotropical regions to test whether the relatively low tropical species diversity of this family is genuine or caused by insufficient sampling and a strong taxonomic impediment. Field surveys in six French Guianan and one Ecuadorian site produced 516 gracillariid specimens that were DNA barcoded to facilitate identification and to match larvae inside leaf mines with adults. Species delineation from sequence data was approximated using Automatic Barcode Gap Discovery and Refined Single Linkage Analysis through the Barcode Index Number system, and the proportion of described/undescribed species was estimated after comparison with types of 83% of described species. Locally, alpha-diversity far exceeds that of any known temperate fauna, with as many as 108 candidate species (59.3% as singletons) collected at one site, and with an estimated species richness lower bound of 240 species. Strikingly, at least 85% of the species collected as adults were found to be undescribed. Our sampling represents the most thorough survey of gracillariid species diversity in the Neotropics to date and the results from both our molecular and morphological analyses indicate that the current reverse LBG seen in this group is an artefact of insufficient sampling and a strong description deficit in the Neotropics.
创建时间:
2013-09-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MNLI

MNLI(Multi-Genre Natural Language Inference)是一个大规模的自然语言推理数据集,包含433,000多对句子对。该数据集用于评估模型在不同文本类型中的推理能力,包括新闻文章、小说、论坛帖子等。每个句子对都标注了三种可能的关系:蕴含(entailment)、矛盾(contradiction)和中性(neutral)。

cims.nyu.edu 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

NIRS_DataSets

包含多个近红外光谱相关的数据集,用于分析和预测不同物质的特性,如药物成分、食品老化、谷物蛋白质等。

github 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录