five

Data from: DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics

收藏
DataONE2013-09-26 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Higher taxa often show increasing species richness towards tropical low latitudes, a pattern known as the latitudinal biodiversity gradient (LBG). A rare reverse LBG (with greater richness towards temperate high latitudes) is exhibited by Gracillariidae leaf-mining moths, in which most described species occur in northern temperate areas. We carried out the first assessment of gracillariid species diversity in two Neotropical regions to test whether the relatively low tropical species diversity of this family is genuine or caused by insufficient sampling and a strong taxonomic impediment. Field surveys in six French Guianan and one Ecuadorian site produced 516 gracillariid specimens that were DNA barcoded to facilitate identification and to match larvae inside leaf mines with adults. Species delineation from sequence data was approximated using Automatic Barcode Gap Discovery and Refined Single Linkage Analysis through the Barcode Index Number system, and the proportion of described/undescribed species was estimated after comparison with types of 83% of described species. Locally, alpha-diversity far exceeds that of any known temperate fauna, with as many as 108 candidate species (59.3% as singletons) collected at one site, and with an estimated species richness lower bound of 240 species. Strikingly, at least 85% of the species collected as adults were found to be undescribed. Our sampling represents the most thorough survey of gracillariid species diversity in the Neotropics to date and the results from both our molecular and morphological analyses indicate that the current reverse LBG seen in this group is an artefact of insufficient sampling and a strong description deficit in the Neotropics.
创建时间:
2013-09-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Wafer Defect

该数据集包含了七个主要类别的晶圆缺陷,分别是:BLOCK ETCH、COATING BAD、PARTICLE、PIQ PARTICLE、PO CONTAMINATION、SCRATCH和SEZ BURNT。这些类别涵盖了晶圆在生产过程中可能出现的多种缺陷类型,每一种缺陷都有其独特的成因和表现形式。数据集不仅在类别数量上具有多样性,而且在样本的多样性和复杂性上也展现了其广泛的应用潜力。每个类别的样本均经过精心标注,确保了数据的准确性和可靠性。

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

YouTube-English

该数据集包含从各种YouTube频道提取的英语音频片段以及相应的转录元数据。数据用于训练自动语音识别(ASR)模型。数据来源于YouTube频道,处理过程包括下载、分割和保存音频及元数据。数据集总结部分详细列出了每个频道的视频数量、持续时间和占总数据集的百分比。

huggingface 收录

PRBench

PRBench是一个大规模专家标注的专业领域高风险推理基准测试数据集,当前版本覆盖法律和金融领域。包含1,100个专家编写的跨金融和法律领域的对话,19,356个专家策划的评估标准(每个任务10-30条),覆盖114个国家、47个美国司法管辖区和25个专业主题,并包含最具挑战性任务的硬子集(Finance-300, Legal-250)。

github 收录