five

Data from: DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics

收藏
DataONE2013-09-26 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Higher taxa often show increasing species richness towards tropical low latitudes, a pattern known as the latitudinal biodiversity gradient (LBG). A rare reverse LBG (with greater richness towards temperate high latitudes) is exhibited by Gracillariidae leaf-mining moths, in which most described species occur in northern temperate areas. We carried out the first assessment of gracillariid species diversity in two Neotropical regions to test whether the relatively low tropical species diversity of this family is genuine or caused by insufficient sampling and a strong taxonomic impediment. Field surveys in six French Guianan and one Ecuadorian site produced 516 gracillariid specimens that were DNA barcoded to facilitate identification and to match larvae inside leaf mines with adults. Species delineation from sequence data was approximated using Automatic Barcode Gap Discovery and Refined Single Linkage Analysis through the Barcode Index Number system, and the proportion of described/undescribed species was estimated after comparison with types of 83% of described species. Locally, alpha-diversity far exceeds that of any known temperate fauna, with as many as 108 candidate species (59.3% as singletons) collected at one site, and with an estimated species richness lower bound of 240 species. Strikingly, at least 85% of the species collected as adults were found to be undescribed. Our sampling represents the most thorough survey of gracillariid species diversity in the Neotropics to date and the results from both our molecular and morphological analyses indicate that the current reverse LBG seen in this group is an artefact of insufficient sampling and a strong description deficit in the Neotropics.
创建时间:
2013-09-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

UCF-Crime

UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。

OpenDataLab 收录

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录