five

Data from: Fearlessness towards extirpated large carnivores may exacerbate the impacts of naïve mesocarnivores

收藏
DataONE2016-11-18 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
By suppressing mesocarnivore foraging, the fear large carnivores inspire can be critical to mitigating mesocarnivore impacts. Where large carnivores have declined, mesocarnivores may quantitatively increase foraging, commensurate with reductions in fear. The extirpation of large carnivores may further exacerbate mesocarnivore impacts by causing qualitative changes in mesocarnivore behavior. Error management theory suggests that, where predators are present, prey should be biased towards over-responsiveness to predator cues, abandoning foraging in response to both predator cues and benign stimuli mistaken for predator cues (false-positives). Where predators are absent, prey may avoid these foraging costs by becoming unresponsive (naïve) to both predator cues and false-positives. If naiveté occurs in mesocarnivores where large carnivores have been extirpated, it could substantively exacerbate their impacts, as ‘fearless’ mesocarnivores may engage in virtually unrestricted foraging. We tested the naiveté of raccoons (Procyon lotor) to extirpated large carnivores in the context of a larger experiment demonstrating that fear of large carnivores can mediate mesocarnivore impacts. Raccoon responsiveness to playbacks of their extirpated large carnivore predators (cougars, Puma conolor; bears, Ursus americanus) was significantly less than to the only extant large carnivore predator (dogs), and was no greater than to non-predators (‘seals’; Phoca vitulina, Eumetopias jubatus). Raccoons failed to recognize their now extirpated predators as threatening, spending as much time foraging as when hearing non-predators, which we estimate has substantive impacts, based on results from the larger experiment. We discuss the potentially powerful role of ‘fearlessness’ in exacerbating mesocarnivore impacts in systems where large carnivores have been lost.
创建时间:
2016-11-18
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录

基于站点观测的中国1km土壤湿度日尺度数据集(2000-2022)

本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2022年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度,数据单位为0.001m³/m³,缺失值为-999,投影为WGS1984。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land气象强迫数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。本研究进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,本研究提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。

国家青藏高原科学数据中心 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录

China Air Quality Historical Data

该数据集包含了中国多个城市的空气质量历史数据,涵盖了PM2.5、PM10、SO2、NO2、CO、O3等污染物浓度以及空气质量指数(AQI)等信息。数据按小时记录,提供了详细的空气质量监测数据。

www.cnemc.cn 收录