five

Data from: Fearlessness towards extirpated large carnivores may exacerbate the impacts of naïve mesocarnivores

收藏
DataONE2016-11-18 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
By suppressing mesocarnivore foraging, the fear large carnivores inspire can be critical to mitigating mesocarnivore impacts. Where large carnivores have declined, mesocarnivores may quantitatively increase foraging, commensurate with reductions in fear. The extirpation of large carnivores may further exacerbate mesocarnivore impacts by causing qualitative changes in mesocarnivore behavior. Error management theory suggests that, where predators are present, prey should be biased towards over-responsiveness to predator cues, abandoning foraging in response to both predator cues and benign stimuli mistaken for predator cues (false-positives). Where predators are absent, prey may avoid these foraging costs by becoming unresponsive (naïve) to both predator cues and false-positives. If naiveté occurs in mesocarnivores where large carnivores have been extirpated, it could substantively exacerbate their impacts, as ‘fearless’ mesocarnivores may engage in virtually unrestricted foraging. We tested the naiveté of raccoons (Procyon lotor) to extirpated large carnivores in the context of a larger experiment demonstrating that fear of large carnivores can mediate mesocarnivore impacts. Raccoon responsiveness to playbacks of their extirpated large carnivore predators (cougars, Puma conolor; bears, Ursus americanus) was significantly less than to the only extant large carnivore predator (dogs), and was no greater than to non-predators (‘seals’; Phoca vitulina, Eumetopias jubatus). Raccoons failed to recognize their now extirpated predators as threatening, spending as much time foraging as when hearing non-predators, which we estimate has substantive impacts, based on results from the larger experiment. We discuss the potentially powerful role of ‘fearlessness’ in exacerbating mesocarnivore impacts in systems where large carnivores have been lost.
创建时间:
2016-11-18
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

Photovoltaic fault dataset

该数据集包含了一个并网光伏电站16天的运行数据,包括正常和故障状态。数据集分为两个.mat文件,可以使用MATLAB加载。数据涵盖了电压、电流、温度、辐照度和故障类别标签等信息。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录