five

Data from: Repeated habitat disturbances by fire decrease local effective population size|种群遗传学数据集|生态干扰数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
种群遗传学
生态干扰
下载链接:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8568n
下载链接
链接失效反馈
资源简介:
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened seven microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than ten years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Apple Stock Price Data

Historical stock price data for AAPL (apple)

kaggle 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录