准停道路停车基础要素调查统计表|道路停车数据集|调查统计数据集
收藏flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
BDD100K
数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。
OpenDataLab 收录
PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
Club Football Match Data (2000 - 2025)
该数据集提供了一个简单的入口,用于分析全球27个国家和42个联赛的足球比赛数据,包括英超、德甲和西甲等顶级联赛。数据涵盖了从2000/01赛季到2024/25赛季的最新比赛结果。数据集还包括Elo评分,每月的1号和15号对欧洲约500支最佳球队进行快照。
github 收录
WTQ (WikiTableQuestions)
WikiTableQuestions (WTQ) 是一个用于自然语言处理任务的数据集,主要用于从表格数据中提取信息。该数据集包含来自维基百科的22,033个表格和22,033个问题,每个问题都与一个表格相关联。数据集的目标是训练和评估模型,使其能够理解自然语言查询并从表格中提取正确的答案。
github.com 收录
