five

Data from: Nonlandmark classification in paleobiology: computational geometry as a tool for species discrimination

收藏
DataONE2016-05-17 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
One important and sometimes contentious challenge in paleobiology is discriminating between species, which is increasingly accomplished by comparing specimen shape. While lengths and proportions are needed to achieve this task, finer geometric information, such as concavity, convexity, and curvature, plays a crucial role in the undertaking. Nonetheless, standard morphometric methodologies such as landmark analysis are not able to capture in a quantitative way these features and other important fine-scale geometric notions. Here we develop and implement state-of-the-art techniques from the emerging field of computational geometry to tackle this problem with the Mississippian blastoid Pentremites. We adapt previously known computational framework to produce a measure of dissimilarity between shapes. More precisely, we compute “distances” between pairs of 3D surface scans of specimens by comparing a mix of global and fine-scale geometric measurements. This process uses the 3D scan of a specimen as a whole piece of data incorporating complete geometric information about the shape; as a result, scans used must accurately reflect the geometry of whole, undamaged, undeformed specimens. Using this information we are able to represent these data in clusters, and ultimately reproduce and refine results obtained in previous work on species discrimination. Our methodology is landmark-free, and therefore faster and less prone to human error than previous landmark-based methodologies.
创建时间:
2016-05-17
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

AirSafe_DB

该数据集包含了从Plane Crash Info网站上抓取的飞机事故的结构化信息,原始数据为CSV格式,经过AI模型处理后生成了标准化的JSON格式数据。数据集包含5049条记录,每条记录包括事故信息(日期、时间、地点等)、飞机信息(运营商、航班号、机型等)、伤亡统计(总死亡人数、机组人员、乘客、地面人员等)、事故摘要(事故描述、事故类型、飞行阶段等)等内容。数据经过标准化处理,确保数据质量和一致性,适用于分析和研究。

huggingface 收录

yuvidhepe/us-accidents-updated

这是一个覆盖美国49个州的全国性交通事故数据集,数据收集自2016年2月至2023年3月,通过多种交通API实时收集。目前数据集中包含约770万条交通事故记录,可用于实时交通事故预测、热点位置研究、伤亡分析以及环境因素对事故发生的影响研究等。

hugging_face 收录

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录