five

Data from: Nonlandmark classification in paleobiology: computational geometry as a tool for species discrimination

收藏
DataONE2016-05-17 更新2024-06-26 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
One important and sometimes contentious challenge in paleobiology is discriminating between species, which is increasingly accomplished by comparing specimen shape. While lengths and proportions are needed to achieve this task, finer geometric information, such as concavity, convexity, and curvature, plays a crucial role in the undertaking. Nonetheless, standard morphometric methodologies such as landmark analysis are not able to capture in a quantitative way these features and other important fine-scale geometric notions. Here we develop and implement state-of-the-art techniques from the emerging field of computational geometry to tackle this problem with the Mississippian blastoid Pentremites. We adapt previously known computational framework to produce a measure of dissimilarity between shapes. More precisely, we compute “distances” between pairs of 3D surface scans of specimens by comparing a mix of global and fine-scale geometric measurements. This process uses the 3D scan of a specimen as a whole piece of data incorporating complete geometric information about the shape; as a result, scans used must accurately reflect the geometry of whole, undamaged, undeformed specimens. Using this information we are able to represent these data in clusters, and ultimately reproduce and refine results obtained in previous work on species discrimination. Our methodology is landmark-free, and therefore faster and less prone to human error than previous landmark-based methodologies.
创建时间:
2016-05-17
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

垃圾分类数据集

华为云垃圾分类训练集:分为训练集和测试集,训练集为原华为云垃圾分类比赛数据集,测试集为另外添加图片。大致分为4类,"0": "其他垃圾/一次性快餐盒", "1": "其他垃圾/污损塑料", "2": "其他垃圾/烟蒂", "3": "其他垃圾/牙签", "4": "其他垃圾/破碎花盆及碟碗", "5": "其他垃圾/竹筷", 1 "6": "厨余垃圾/剩饭剩菜", "7": "厨余垃圾/大骨头", "8": "厨余垃圾/水果果皮", "9": "厨余垃圾/水果果肉", "10": "厨余垃圾/茶叶渣", "11": "厨余垃圾/菜叶菜根", "12": "厨余垃圾/蛋壳", "13": "厨余垃圾/鱼骨", 2 "14": "可回收物/充电宝", "15": "可回收物/包", "16": "可回收物/化妆品瓶", "17": "可回收物/塑料玩具", "18": "可回收物/塑料碗盆", "19": "可回收物/塑料衣架", "20": "可回收物/快递纸袋", "21": "可回收物/插头电线", "22": "可回收物/旧衣服", "23": "可回收物/易拉罐", "24": "可回收物/枕头", "25": "可回收物/毛绒玩具", "26": "可回收物/洗发水瓶", "27": "可回收物/玻璃杯", "28": "可回收物/皮鞋", "29": "可回收物/砧板", "30": "可回收物/纸板箱", "31": "可回收物/调料瓶", "32": "可回收物/酒瓶", "33": "可回收物/金属食品罐", "34": "可回收物/锅", "35": "可回收物/食用油桶", "36": "可回收物/饮料瓶", 3 "37": "有害垃圾/干电池", "38": "有害垃圾/软膏", "39": "有害垃圾/过期药物"

阿里云天池 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

Paper III (Walker et al. 2024)

Data products used in 3-D CMZ Paper III, Walker et al. (2024). The full cloud catalogue is provided in tabular format, along with a full CMZ map showing the clouds and their assigned IDs. For each cloud ID in the published catalogue there are: - Individual cube cutouts from the MOPRA 3mm CMZ survey (HC3N, HCN, and HNCO). - Individual cube cutouts from the APEX 1mm CMZ survey (13CO, C18O, and H2CO). - Cloud-averaged spectra of the ATCA H2CO 4.83 GHz line. - PV slices of the ATCA H2CO 4.83 GHz line, taken across the major axis of the source. - Where applicable, there are mask files which correspond to the different velocity components of the cloud. In these cases, there are two mask files per velocity component, corresponding to the different masking approaches described in the paper.

DataCite Commons 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录