five

eugenesiow/Urban100|图像超分辨率数据集|计算机视觉数据集

收藏
hugging_face2022-10-21 更新2024-03-04 收录
图像超分辨率
计算机视觉
下载链接:
https://hf-mirror.com/datasets/eugenesiow/Urban100
下载链接
链接失效反馈
资源简介:
Urban100数据集包含100张城市景观的高分辨率图像,通常用作评估超分辨率模型性能的测试集。该数据集由Huang等人在2015年首次发布,并在论文《Single Image Super-Resolution From Transformed Self-Exemplars》中进行了介绍。数据集的结构包括高分辨率(HR)和低分辨率(LR)图像的路径,数据分割为bicubic_x2、bicubic_x3和bicubic_x4三种。数据集的创建基于Flickr上的图像,使用了CC-BY-4.0许可证。
提供机构:
eugenesiow
原始信息汇总

数据集概述

  • 名称: Urban100
  • 描述: Urban100数据集包含100张城市景观图像,主要用于评估超分辨率模型的性能。
  • 创建者: Huang et al. (2015)
  • 语言: 无特定语言
  • 许可: CC-BY-4.0
  • 多语言性: 单语
  • 数据源: 原创数据
  • 任务类别: 其他
  • 标签: 其他-图像超分辨率

数据集详情

数据集总结

Urban100数据集由100张城市景观图像组成,用于评估超分辨率模型的性能。该数据集首次由Huang et al. (2015)在论文"Single Image Super-Resolution From Transformed Self-Exemplars"中发布。

支持的任务和排行榜

该数据集主要用于图像超分辨率任务的评估。

数据集结构

  • 数据实例: 每个实例包含高分辨率(HR)和低分辨率(LR)图像的路径。
  • 数据字段:
    • hr: 高分辨率图像路径
    • lr: 低分辨率图像路径
  • 数据分割:
    • bicubic_x2: 100
    • bicubic_x3: 100
    • bicubic_x4: 100

数据集创建

  • 来源数据: 数据集使用Flickr上的图像构建,关键词包括城市、建筑等。
  • 注释: 无注释

使用数据注意事项

  • 社会影响: 未提供
  • 偏见讨论: 未提供
  • 其他已知限制: 未提供

附加信息

  • 数据集维护者: Huang et al. (2015)

  • 许可信息: 使用CC-BY-4.0许可

  • 引用信息: bibtex @InProceedings{Huang_2015_CVPR, author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra}, title = {Single Image Super-Resolution From Transformed Self-Exemplars}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2015} }

  • 贡献者: @eugenesiow

AI搜集汇总
数据集介绍
main_image_url
构建方式
Urban100数据集由Huang等人于2015年构建,包含100张高分辨率的城市场景图像。该数据集的构建基于Flickr平台上的图像,通过关键词如'urban'、'city'、'architecture'和'structure'筛选,确保图像的多样性和代表性。这些图像均遵循CC-BY-4.0许可,确保了数据集的合法性和可访问性。
特点
Urban100数据集的主要特点在于其专注于城市景观,涵盖了多种真实世界的建筑结构。这些图像被广泛用于超分辨率模型的性能评估,特别是在图像放大任务中。数据集的结构简单明了,包含高分辨率(HR)和低分辨率(LR)两种图像路径,便于直接用于模型训练和验证。
使用方法
使用Urban100数据集时,首先通过pip安装所需的依赖库,如'datasets'和'super-image'。随后,可以利用'super-image'库加载数据集并进行模型评估。例如,通过加载'bicubic_x2'分割的验证集,用户可以实例化一个评估数据集对象,并使用预训练的模型进行性能评估。
背景与挑战
背景概述
Urban100数据集由Huang等人在2015年创建,主要用于评估图像超分辨率模型的性能。该数据集包含100张城市场景的高分辨率图像,广泛应用于计算机视觉领域,特别是单图像超分辨率任务。Urban100的创建旨在提供一个标准化的测试集,以比较不同超分辨率算法的效果,从而推动该领域的发展。Huang等人的研究成果在CVPR 2015上发表,题为“Single Image Super-Resolution From Transformed Self-Exemplars”,该论文详细介绍了数据集的构建方法及其在超分辨率任务中的应用。
当前挑战
Urban100数据集在构建过程中面临的主要挑战包括数据收集的多样性和代表性。由于数据集仅包含100张图像,确保这些图像能够充分代表城市环境的复杂性和多样性是一个重要问题。此外,数据集的创建过程中未进行人工标注,这可能导致在某些应用场景中缺乏详细的信息支持。在应用方面,Urban100主要用于图像超分辨率任务的评估,但其有限的规模和特定的场景类型可能限制了其在更广泛应用中的适用性。
常用场景
经典使用场景
在图像处理领域,eugenesiow/Urban100数据集以其独特的城市景观图像而闻名,主要用于评估超分辨率模型的性能。该数据集包含100张高分辨率的城市图像,通过生成对应的低分辨率图像,为研究人员提供了一个标准化的测试平台。通过对比模型生成的超分辨率图像与原始高分辨率图像,可以量化模型的性能,从而推动图像超分辨率技术的发展。
解决学术问题
eugenesiow/Urban100数据集在学术研究中解决了图像超分辨率领域的关键问题。它为研究人员提供了一个统一的基准,用于评估和比较不同超分辨率算法的效果。通过该数据集,研究者能够更准确地衡量算法的性能,识别其在处理复杂城市景观时的优势与不足,从而推动算法的优化与创新。此外,该数据集还促进了跨学科的研究合作,为图像处理与计算机视觉领域的进步提供了坚实的基础。
衍生相关工作
eugenesiow/Urban100数据集的发布激发了大量相关研究工作。例如,Huang等人在2015年提出的基于自示例变换的单图像超分辨率方法,为后续研究奠定了基础。此外,该数据集还被广泛用于评估各种超分辨率模型的性能,如深度学习方法中的卷积神经网络(CNN)和生成对抗网络(GAN)。这些研究不仅推动了图像超分辨率技术的发展,还促进了计算机视觉和图像处理领域的交叉研究,形成了丰富的学术成果和技术应用。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录