BU-3DFE (Binghamton University 3D Facial Expression)|面部表情识别数据集|3D数据数据集
收藏
- BU-3DFE数据集首次发表,由Binghamton大学的研究团队创建,旨在提供一个标准化的3D面部表情数据库,用于研究和开发面部表情识别算法。
- BU-3DFE数据集首次应用于学术研究,特别是在计算机视觉和模式识别领域,为研究人员提供了一个重要的基准数据集。
- 随着深度学习技术的发展,BU-3DFE数据集被广泛用于训练和验证深度学习模型,特别是在面部表情识别任务中。
- BU-3DFE数据集的扩展版本发布,增加了更多的样本和表情类别,进一步丰富了数据集的内容和多样性。
- BU-3DFE数据集被多个国际会议和期刊引用,成为面部表情分析领域的重要参考数据集之一。
- BU-3DFE数据集的应用范围进一步扩大,不仅在学术研究中继续发挥重要作用,还在商业应用中得到了实际应用,如情感计算和人机交互领域。
- 1BU-3DFE (Binghamton University 3D Facial Expression Database): A 3D Facial Expression Database for Biometric ApplicationsBinghamton University · 2006年
- 23D Facial Expression Recognition Using a Dynamic Texture-Based MethodUniversity of Oulu · 2010年
- 3A Comprehensive Study on 3D Facial Expression RecognitionUniversity of Trento · 2015年
- 4Deep Learning for 3D Facial Expression Recognition: A SurveyUniversity of Surrey · 2020年
- 53D Facial Expression Recognition Using Convolutional Neural NetworksUniversity of California, Irvine · 2018年
AISHELL/AISHELL-1
Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。
hugging_face 收录
中国气象数据
本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。
github 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
Breast Cancer Dataset
该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。
github 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录