Carotenoid content
收藏中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
The Rice Annotation Project Database (RAP-DB)
RAP-DB是一个专注于水稻基因组注释的数据库,提供了水稻基因组的详细注释信息,包括基因结构、功能注释、表达数据等。该数据库旨在为水稻研究者提供一个全面的资源,以促进水稻基因组学和遗传学的研究。
rapdb.dna.affrc.go.jp 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
CODrone
CODrone 是一个为无人机设计的全面定向目标检测数据集,它准确反映了真实世界条件。该数据集包含来自多个城市在不同光照条件下的广泛标注图像,增强了基准的逼真度。CODrone 包含超过 10,000 张高分辨率图像,捕获自五个城市的真实无人机飞行,涵盖了各种城市和工业环境,包括港口和码头。为了提高鲁棒性和泛化能力,它包括在正常光线、低光和夜间条件下相同场景的图像。我们采用了三种飞行高度和两种常用的相机角度,从而产生了六个不同的视角配置。所有图像都针对 12 个常见对象类别进行了定向边界框标注,总计超过 590,000 个标记实例。总体而言,这项工作构建了一个综合数据集和基准,用于城市无人机场景中的定向目标检测,旨在满足该领域的研究和实践应用需求。
arXiv 收录
DIOR
“DIOR” 是用于光学遥感图像中对象检测的大规模基准数据集,该数据集由23,463图像和带有水平边界框注释的192,518对象实例组成。
OpenDataLab 收录
