five

Enhancing research informatics core user satisfaction through agile practices

收藏
DataONE2024-04-23 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/sha256:1e735d500f084762ac9c7e13d502c2898eacc791fbb48c0704a62045d39e8dd3
下载链接
链接失效反馈
资源简介:
Objective: The Huntsman Cancer Institute (HCI) Research Informatics Shared Resource (RISR), a software and database development core facility, sought to address a lack of published operational best practices for research informatics cores. It aimed to use those insights to enhance effectiveness after an increase in team size from 20 to 31 full-time equivalents coincided with a reduction in user satisfaction. Materials and Methods: RISR migrated from a water-scrum-fall model of software development to agile software development practices, which emphasize iteration and collaboration. RISR’s agile implementation emphasizes the product owner role, which is responsible for user engagement and may be particularly valuable in software development that requires close engagement with users like in science. Results: All RISR’s software development teams implemented agile practices in early 2020. All project teams are led by a product owner who serves as the voice of the user on the development te..., We used Huntsman Cancer Institute (HCI)'s annual user survey of its shared resources to evaluate the impact of the Research Informatics Shared Resource (RISR)'s new structure in its first year. The survey is administered by the HCI Research Administration office and is distributed through Survey Monkey to cancer center members and recent users of at least one HCI shared resource. While the survey asks many questions that applied to RISR, the questions that are the focus of this analysis are listed below: Overall, how would you rate the quality of the service/product you received from the Research Informatics Shared Resource? Answers: Exceptional, high, average, poor, unacceptable Overall, how would you rate the turnaround time for receiving data, products or other services from the Research Informatics Shared Resource? Answers: Exceptional, high, average, poor, unacceptable The user survey was open between September 11 and September 24. Thus, it provided feedback nine months after RIS..., , # Enhancing research informatics core user satisfaction through agile practices [https://doi.org/10.5061/dryad.00000004v](https://doi.org/10.5061/dryad.00000004v) DATA OVERVIEW The dataset contains a subset of the results from the Huntsman Cancer Institute (HCI, [https://healthcare.utah.edu/huntsmancancerinstitute/](https://healthcare.utah.edu/huntsmancancerinstitute/) research shared resource annual user survey at the University of Utah ([https://www.utah.edu/](https://www.utah.edu/). The survey is administered by the HCI Research Administration office and is distributed through Survey Monkey to cancer center members and recent users of at least one HCI shared resource. This dataset is from two questions asked about the HCI Research Informatics Shared Resource (RISR, [https://risr.hci.utah.edu/](https://risr.hci.utah.edu/): 1\. Overall, how would you rate the quality of the service/product you received from the Research Informatics Shared Resource?     Possible answers: exce...
创建时间:
2025-07-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录