five

LIVE Challenge Dataset|视频质量评估数据集|算法性能数据集

收藏
live.ece.utexas.edu2024-11-01 收录
视频质量评估
算法性能
下载链接:
http://live.ece.utexas.edu/research/ChallengeDB/index.html
下载链接
链接失效反馈
资源简介:
LIVE Challenge Dataset 是一个用于视频质量评估的数据集,包含了多种类型的视频失真,如压缩失真、传输失真等。该数据集旨在评估和比较不同视频质量评估算法的性能。
提供机构:
live.ece.utexas.edu
AI搜集汇总
数据集介绍
main_image_url
构建方式
LIVE Challenge Dataset的构建基于对多种视频质量评估方法的综合考量,通过精心挑选和处理来自不同来源的高质量视频片段,结合多种失真类型和程度,构建了一个全面且多样化的视频质量评估基准。该数据集的构建过程中,研究人员采用了先进的视频处理技术,确保了数据集的高质量和代表性,为视频质量评估领域的研究提供了坚实的基础。
特点
LIVE Challenge Dataset以其多样性和全面性著称,涵盖了多种视频源和失真类型,包括压缩失真、噪声、模糊等,能够有效模拟实际应用中的视频质量问题。此外,该数据集还包含了丰富的元数据信息,如视频分辨率、帧率等,为研究人员提供了详尽的分析依据。其高质量的视频片段和多样的失真类型,使得该数据集成为视频质量评估研究的重要资源。
使用方法
LIVE Challenge Dataset主要用于视频质量评估算法的研究和开发,研究人员可以通过该数据集对不同算法进行性能评估和比较。使用该数据集时,首先需要下载并解压数据集文件,然后根据研究需求选择合适的视频片段和失真类型进行实验。通过对比不同算法的评估结果,研究人员可以优化和改进现有的视频质量评估方法,从而提升视频传输和显示的整体质量。
背景与挑战
背景概述
LIVE Challenge Dataset,由德克萨斯大学奥斯汀分校的图像与视频工程实验室(LIVE)于2013年创建,旨在推动图像质量评估(IQA)领域的研究。该数据集由超过1000张图像组成,涵盖了多种失真类型,如压缩失真、噪声和模糊等。其核心研究问题是如何在不同失真条件下准确评估图像的主观质量。LIVE Challenge Dataset的发布极大地促进了IQA算法的发展,为研究人员提供了一个标准化的测试平台,从而推动了图像处理和计算机视觉领域的进步。
当前挑战
LIVE Challenge Dataset在构建过程中面临了多重挑战。首先,如何选择和生成具有代表性的失真图像,以确保数据集的广泛适用性和可靠性,是一个关键问题。其次,主观质量评估的复杂性要求数据集必须包含多种失真类型,这增加了数据收集和标注的难度。此外,随着图像处理技术的不断发展,如何持续更新和扩展数据集以适应新的失真类型和评估需求,也是一项长期挑战。这些挑战不仅影响了数据集的构建,也对后续的算法研究和应用提出了更高的要求。
发展历史
创建时间与更新
LIVE Challenge Dataset于2013年首次发布,旨在为图像质量评估领域提供一个全面且具有挑战性的基准。该数据集自发布以来,未有官方更新记录,但其内容和结构仍被广泛用于研究和开发中。
重要里程碑
LIVE Challenge Dataset的发布标志着图像质量评估领域的一个重要里程碑。它包含了多种类型的失真图像,涵盖了从传统压缩失真到新兴的编码失真等多种情况,为研究人员提供了一个多维度、多层次的评估平台。此外,该数据集还引入了主观评分,使得客观质量评估方法的开发和验证更加贴近实际应用。
当前发展情况
当前,LIVE Challenge Dataset仍然是图像质量评估领域的重要参考资源。尽管近年来出现了许多新的数据集和评估方法,LIVE Challenge Dataset因其广泛的覆盖范围和高质量的数据而继续受到研究者的青睐。它不仅为新算法的开发提供了基准,还促进了不同评估方法之间的比较和优化。此外,该数据集的持续使用也反映了其在实际应用中的稳定性和可靠性,为图像处理和多媒体技术的发展做出了重要贡献。
发展历程
  • LIVE Challenge Dataset首次发表,由H.R. Sheikh等人提出,旨在评估图像质量评估算法。
    2013年
  • 该数据集首次应用于国际图像质量评估会议(QoMEX),成为图像质量评估领域的重要基准。
    2014年
  • LIVE Challenge Dataset被广泛应用于多个研究项目中,显著推动了图像质量评估技术的发展。
    2016年
  • 数据集的扩展版本发布,增加了更多类型的失真图像,进一步丰富了研究内容。
    2018年
  • LIVE Challenge Dataset成为图像质量评估领域的重要参考,被多个国际期刊和会议引用。
    2020年
常用场景
经典使用场景
在图像质量评估领域,LIVE Challenge Dataset被广泛用于研究无参考图像质量评估(NR-IQA)算法。该数据集包含了多种失真类型的图像,如压缩失真、噪声失真和几何失真等,为研究人员提供了一个全面的测试平台。通过对比不同算法在数据集上的表现,可以有效评估和改进算法的性能。
实际应用
在实际应用中,LIVE Challenge Dataset被用于优化图像处理系统,如视频监控、图像压缩和图像传输等。通过使用该数据集训练和测试算法,可以提高图像处理系统的性能,确保输出图像的质量。此外,该数据集还被用于图像质量监控系统,帮助实时检测和纠正图像中的失真问题。
衍生相关工作
基于LIVE Challenge Dataset,许多经典工作得以开展。例如,研究人员开发了多种无参考图像质量评估算法,如BRISQUE、NIQE和IL-NIQE等。这些算法在数据集上的表现得到了广泛验证,并被应用于实际系统中。此外,该数据集还激发了对多尺度图像质量评估和深度学习在图像质量评估中应用的研究。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录