five

Data from: Model misspecification confounds the estimation of rates and exaggerates their time dependency

收藏
DataONE2015-11-06 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
While welcoming the comment of Ho et al. (2015), we find little that undermines the strength of our criticism, and it would appear they have misunderstood our central argument. Here we respond with the purpose of reiterating that we are (i) generally critical of much of the evidence presented in support of the time-dependent molecular rate (TDMR) hypothesis and (ii) specifically critical of estimates of μ derived from tip-dated sequences that exaggerate the importance of purifying selection as an explanation for TDMR over extended timescales. In response to assertions put forward by Ho et al. (2015), we use panmictic coalescent simulations of temporal data to explore a fundamental assumption for tip-dated tree shape and associated mutation rate estimates, and the appropriateness and utility of the date randomization test. The results reveal problems for the joint estimation of tree topology, effective population size and μ with tip-dated sequences using beast. Given the simulations, beast consistently obtains incorrect topological tree structures that are consistent with the substantial overestimation of μ and underestimation of effective population size. Data generated from lower effective population sizes were less likely to fail the date randomization test yet still resulted in substantially upwardly biased estimates of rates, bringing previous estimates of μ from temporally sampled DNA sequences into question. We find that our general criticisms of both the hypothesis of time-dependent molecular evolution and Bayesian methods to estimate μ from temporally sampled DNA sequences are further reinforced.
创建时间:
2015-11-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov 收录

cifar10

该数据集包含了完整的CIFAR10数据集,通过PyTorch下载并分割成.png格式的32x32图片。数据集分为三个部分:训练集(train,49,000个样本)、校准集(calibration,1,000个样本)和测试集(test,10,000个样本),每个部分按类别平衡。

huggingface 收录