five

Replication Data for: \"Understanding Vote Buying in Nepali Elections.\"

收藏
DataONE2024-06-04 更新2024-10-19 收录
下载链接:
https://search.dataone.org/view/sha256:b5ddf0cb53dbc95e717c36eb2455ca5a93f6838030e56290fe99263305eea8b7
下载链接
链接失效反馈
资源简介:
Follow instructions in README.txt. Abstract for paper: A growing literature posits that vote buying dynamics depend on characteristics of the context and its voters. We explore vote buying in Nepal using a multi-methods approach combining survey experiments, semistructured interviews, and focus group discussions. We find that vote buying in Nepal aligns somewhat with other contexts. A list experiment reveals approximately 25% of Nepali voters receive a voter-buying offer and, in an unmonitored but contingent exchange, the same percentage vote for the offeror candidate or party. Cash and other private goods are the most common offers. In contrast to findings from other contexts, however, voter education level is the strongest predictor of refraining from vote buying in Nepal, and wealth is not a significant predictor. Our list experiment also finds that, in Nepal, clientelism appears to be a socially undesirable activity. Overall, our results support the increasingly dominant viewpoint that vote buying is highly context dependent.
创建时间:
2024-09-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CHiME-5

CHiME-5是关于自动语音识别处理技术的数据集。该数据集来自第5个CHiME挑战,包括在真实家庭环境中进行远程多麦克风会话的任务。从晚餐场景中提取语音素材,数据集获得自然对话语音数据,并由6个Kinect麦克风阵列和4个双耳麦克风对记录。 数据集包含单阵列轨道与多阵列轨道语言建模,以及用于阵列同步,语音增强,常规和端到端ASR的数据收集过程,任务和基线系统。

OpenDataLab 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录

ScanNet v2

ScanNet 是一个 RGB-D 视频数据集,包含 1500 多次扫描中的 250 万个视图,并使用 3D 相机姿势、表面重建和实例级语义分割进行注释。为了收集这些数据,我们设计了一个易于使用且可扩展的 RGB-D 捕获系统,其中包括自动表面重建和众包语义注释。我们表明,使用这些数据有助于在几个 3D 场景理解任务上实现最先进的性能,包括 3D 对象分类、语义体素标记和 CAD 模型检索。

OpenDataLab 收录