five

Data from: Neutral and adaptive genomic signatures of rapid poleward range expansion

收藏
DataONE2015-11-09 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Many species are expanding their range polewards and this has been associated with rapid phenotypic change. Yet, it is unclear to what extent this reflects rapid genetic adaptation or neutral processes associated with range expansion, or selection linked to the new thermal conditions encountered. To disentangle these alternatives, we studied the genomic signature of range expansion in the damselfly Coenagrion scitulum using 4950 newly developed genomic SNPs and linked this to the rapidly evolved phenotypic differences between core and (newly established) edge populations. Most edge populations were genetically clearly differentiated from the core populations and all were differentiated from each other indicating independent range expansion events. In addition, evidence for genetic drift in the edge populations, and strong evidence for adaptive genetic variation in association with the range expansion was detected. We identified one SNP under consistent selection in four of the five edge populations and showed that the allele increasing in frequency is associated with increased flight performance. This indicates collateral, non-neutral evolutionary changes in independent edge populations driven by the range expansion process. We also detected a genomic signature of adaptation to the newly encountered thermal regimes, reflecting a pattern of countergradient variation. The latter signature was identified at a single SNP as well as in a set of covarying SNPs using a polygenic multilocus approach to detect selection. Overall, this study highlights how a strategic geographic sampling design and the integration of genomic, phenotypic and environmental data can identify and disentangle the neutral and adaptive processes that are simultaneously operating during range expansions.
创建时间:
2015-11-09
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Global Firepower Index (GFI)

Global Firepower Index (GFI) 是一个评估全球各国军事力量的综合指数。该指数考虑了超过50个因素,包括军事预算、人口、陆地面积、海军力量、空军力量、自然资源、后勤能力、地理位置等。数据集提供了每个国家的详细评分和排名,帮助分析和比较各国的军事实力。

www.globalfirepower.com 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

OECD Statistics

OECD Statistics 数据集包含了经济合作与发展组织(OECD)发布的各种统计数据,涵盖了经济、社会、环境、教育、科技等多个领域。数据集提供了详细的指标和时间序列数据,帮助研究人员和政策制定者分析和理解全球经济和社会发展趋势。

stats.oecd.org 收录

EdNet-Behavior Dataset

EdNet-Behavior Dataset 是一个包含学生学习行为数据的大型数据集,主要用于教育数据挖掘和个性化学习系统的研究。数据集包括学生在不同学习平台上的互动记录,如答题、观看视频、参与讨论等。

github.com 收录

Food101

Food101是一个包含101种食物类别的数据集,共有101,000张图片。每个类别提供250张手动审查的测试图像和750张训练图像。训练图像未经清理,因此仍包含一定量的噪声。所有图像都被缩放到最大边长为512像素。图像包括光照、视角和背景的变化,使其成为一个具有挑战性的数据集。

github 收录