File Carving based Digital Forensic Tools Testing Data Sets (Contiguous Files)|数字取证数据集|数据雕刻数据集
收藏China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
Materials Project 在线材料数据库
Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。
超神经 收录
PulseBat Dataset
PulseBat数据集是由清华大学深圳国际研究生院与厦门立景新能源科技有限公司合作创建的,包含464个退役锂电池的多维度脉冲测试数据。该数据集覆盖了3种正极材料类型、6种使用历史、3种物理形态和6种容量设计。通过10种脉冲宽度和幅值,以及多个荷电状态和健康状况条件下进行脉冲测试,记录了测试条件和电压响应以及温度信号。该数据集可应用于电池的健康状态评估、荷电状态估计、正极材料类型识别、开路电压重构、热管理等关键诊断任务。
arXiv 收录
danaroth/whu_hi
WHU-Hi数据集(武汉无人机载高光谱图像)由武汉大学RSIDEA研究组收集和共享,可作为精确作物分类和高光谱图像分类研究的基准数据集。该数据集包含三个独立的无人机载高光谱数据集:WHU-Hi-LongKou、WHU-Hi-HanChuan和WHU-Hi-HongHu,均在中国湖北省的农业区域采集。这些数据集通过安装在无人机平台上的Headwall Nano-Hyperspec传感器获取,具有高空间分辨率(H2图像)。数据集预处理包括辐射校准和几何校正,使用仪器制造商提供的HyperSpec软件进行处理。每个数据集都包含了详细的采集时间、天气条件、传感器信息、飞行高度、图像尺寸、波段数量和空间分辨率等信息,并提供了不同作物类别的样本数量。
hugging_face 收录
