five

Data from: Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales

收藏
DataONE2018-04-30 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
The placement of angiosperms and Gnetales in seed plant phylogeny remains one of the most enigmatic problems in plant evolution, with morphological analyses (which have usually included fossils) and molecular analyses pointing to very distinct topologies. Almost all morphology-based phylogenies group angiosperms with Gnetales and certain extinct seed plant lineages, while most molecular phylogenies link Gnetales with conifers. In this study, we investigate the phylogenetic signal present in published seed plant morphological datasets. We use parsimony, Bayesian inference, and maximum likelihood approaches, combined with a number of experiments with the data, to address the morphological-molecular conflict. First, we ask whether the lack of association of Gnetales with conifers in morphological analyses is due to an absence of signal or to the presence of competing signals, and second, we compare the performance of parsimony and model-based approaches with morphological datasets. Our results imply that the grouping of Gnetales and angiosperms is largely the result of long branch attraction, consistent across a range of methodological approaches. Thus, there is a signal for the grouping of Gnetales with conifers in morphological matrices, but it was swamped by convergence between angiosperms and Gnetales, both situated on long branches. However, this effect becomes weaker in more recent analyses, as a result of addition and critical reassessment of characters. Even when a clade including angiosperms and Gnetales is still weakly supported by parsimony, model-based approaches favor a clade of Gnetales and conifers, presumably because they are more resistant to long branch attraction. Inclusion of fossil taxa weakens rather than strengthens support for a relationship of angiosperms and Gnetales. Our analyses finally reconcile morphology with molecules in favoring a relationship of Gnetales to conifers, and show that morphology may therefore be useful in reconstructing other aspects of the phylogenetic history of the seed plants.
创建时间:
2018-04-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Spatial_Navigation

这是一个专注于四个代表性任务的多模态增强数据集,这些任务需要不同程度的视觉参与和跨模态交互,包括拼图组装、空间导航、视觉搜索和图表重聚焦。

huggingface 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。

国家海洋科学数据中心 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

MIDV-500

该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。

arXiv 收录

stanford_cars

该数据集是一个包含多个汽车品牌和型号的图片数据集,每个图片样本都标记有相应的汽车品牌和型号信息。数据集适用于图像识别和分类任务,特别是汽车品牌和型号的识别。

huggingface 收录