five

Data from: Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales

收藏
DataONE2018-04-30 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
The placement of angiosperms and Gnetales in seed plant phylogeny remains one of the most enigmatic problems in plant evolution, with morphological analyses (which have usually included fossils) and molecular analyses pointing to very distinct topologies. Almost all morphology-based phylogenies group angiosperms with Gnetales and certain extinct seed plant lineages, while most molecular phylogenies link Gnetales with conifers. In this study, we investigate the phylogenetic signal present in published seed plant morphological datasets. We use parsimony, Bayesian inference, and maximum likelihood approaches, combined with a number of experiments with the data, to address the morphological-molecular conflict. First, we ask whether the lack of association of Gnetales with conifers in morphological analyses is due to an absence of signal or to the presence of competing signals, and second, we compare the performance of parsimony and model-based approaches with morphological datasets. Our results imply that the grouping of Gnetales and angiosperms is largely the result of long branch attraction, consistent across a range of methodological approaches. Thus, there is a signal for the grouping of Gnetales with conifers in morphological matrices, but it was swamped by convergence between angiosperms and Gnetales, both situated on long branches. However, this effect becomes weaker in more recent analyses, as a result of addition and critical reassessment of characters. Even when a clade including angiosperms and Gnetales is still weakly supported by parsimony, model-based approaches favor a clade of Gnetales and conifers, presumably because they are more resistant to long branch attraction. Inclusion of fossil taxa weakens rather than strengthens support for a relationship of angiosperms and Gnetales. Our analyses finally reconcile morphology with molecules in favoring a relationship of Gnetales to conifers, and show that morphology may therefore be useful in reconstructing other aspects of the phylogenetic history of the seed plants.
创建时间:
2018-04-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4100个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为

国家青藏高原科学数据中心 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

2025年目标检测分割分类数据集大合集

FIRC资源搜索下载工具是一个在windows上使用的工具,可以搜索数据集、whl文件,软件,文档等资源的工具。软件资源会不定时更新欢迎下载使用。 受到文件大小文件限制,请访问:https://aistudio.baidu.com/datasetdetail/325626 直接下载使用,或者去下面云盘也可以: 链接: https://pan.baidu.com/s/1a6r53cXtD9jEaSK

魔搭社区 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录