five

Data from: Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula

收藏
DataONE2013-07-12 更新2024-06-27 收录
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Genome-wide association study (GWAS) has revolutionized the search for the genetic basis of complex traits. To date, GWAS have generally relied on relatively sparse sampling of nucleotide diversity, which is likely to bias results by preferentially sampling high-frequency SNPs not in complete linkage disequilibrium (LD) with causative SNPs. To avoid these limitations we conducted GWAS with >6 million SNPs identified by sequencing the genomes of 226 accessions of the model legume Medicago truncatula. We used these data to identify candidate genes and the genetic architecture underlying phenotypic variation in plant height, trichome density, flowering time, and nodulation. The characteristics of candidate SNPs differed among traits, with candidates for flowering time and trichome density in distinct clusters of high linkage disequilibrium (LD) and the minor allele frequencies (MAF) of candidates underlying variation in flowering time and height significantly greater than MAF of candidates underlying variation in other traits. Candidate SNPs tagged several characterized genes including nodulation related genes SERK2, MtnodGRP3, MtMMPL1, NFP, CaML3, MtnodGRP3A and flowering time gene MtFD as well as uncharacterized genes that become candidates for further molecular characterization. By comparing sequence-based candidates to candidates identified by in silico 250K SNP arrays, we provide an empirical example of how reliance on even high-density reduced representation genomic makers can bias GWAS results. Depending on the trait, only 30–70% of the top 20 in silico array candidates were within 1 kb of sequence-based candidates. Moreover, the sequence-based candidates tagged by array candidates were heavily biased towards common variants; these comparisons underscore the need for caution when interpreting results from GWAS conducted with sparsely covered genomes.
创建时间:
2013-07-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

垃圾分类数据集

华为云垃圾分类训练集:分为训练集和测试集,训练集为原华为云垃圾分类比赛数据集,测试集为另外添加图片。大致分为4类,"0": "其他垃圾/一次性快餐盒", "1": "其他垃圾/污损塑料", "2": "其他垃圾/烟蒂", "3": "其他垃圾/牙签", "4": "其他垃圾/破碎花盆及碟碗", "5": "其他垃圾/竹筷", 1 "6": "厨余垃圾/剩饭剩菜", "7": "厨余垃圾/大骨头", "8": "厨余垃圾/水果果皮", "9": "厨余垃圾/水果果肉", "10": "厨余垃圾/茶叶渣", "11": "厨余垃圾/菜叶菜根", "12": "厨余垃圾/蛋壳", "13": "厨余垃圾/鱼骨", 2 "14": "可回收物/充电宝", "15": "可回收物/包", "16": "可回收物/化妆品瓶", "17": "可回收物/塑料玩具", "18": "可回收物/塑料碗盆", "19": "可回收物/塑料衣架", "20": "可回收物/快递纸袋", "21": "可回收物/插头电线", "22": "可回收物/旧衣服", "23": "可回收物/易拉罐", "24": "可回收物/枕头", "25": "可回收物/毛绒玩具", "26": "可回收物/洗发水瓶", "27": "可回收物/玻璃杯", "28": "可回收物/皮鞋", "29": "可回收物/砧板", "30": "可回收物/纸板箱", "31": "可回收物/调料瓶", "32": "可回收物/酒瓶", "33": "可回收物/金属食品罐", "34": "可回收物/锅", "35": "可回收物/食用油桶", "36": "可回收物/饮料瓶", 3 "37": "有害垃圾/干电池", "38": "有害垃圾/软膏", "39": "有害垃圾/过期药物"

阿里云天池 收录

多源数据融合的中国高分辨多要素气象驱动产品(ChinaMet)

  ChinaMet 一个中国高分辨率(1km)和长时间序列(1980-2024)全要素气象驱动产品,通过融合多源遥感数据、再分析资料以及超过 2000 个气象站的观测数据研制而成。ChinaMet 包括 8个气象要素,分别为:降水量(pre)、近地面2米平均气温(tmpmean)、最高...

国家冰川冻土沙漠科学数据中心 收录

NIST Thermochemical Database

NIST Thermochemical Database(NIST热化学数据库)是一个包含大量热化学数据的数据集,涵盖了各种化学物质的热力学性质,如焓、熵、自由能等。该数据库由美国国家标准与技术研究院(NIST)维护,旨在为科学研究和工业应用提供准确的热化学数据。

webbook.nist.gov 收录

STKit

STKit是一个旨在增强视觉语言模型(VLMs)在动态视频中进行时空推理能力的数据集,包含现实世界视频的3D注释,详细描述了对象的运动动力学,如旅行距离、速度、移动方向等。该数据集通过结合标注数据和伪标签数据,支持LLaVA-OneVision模型的微调,以生成具备时空推理能力的ST-VLM模型。

arXiv 收录