Population_Validation
收藏GPQA
GPQA是一个由生物学、物理学和化学领域的专家编写的448个多选题数据集。该数据集的特点是问题质量高且极其困难,即使是具有博士学位或在读博士的专家也仅能达到65%的准确率,而高技能的非专家验证者仅有34%的准确率。数据集旨在用于研究未来AI系统在帮助解答非常困难问题时的可扩展监督方法,特别是在开发新科学知识时。
arXiv 收录
Textile-AD-dataset
Textile AD Dataset是为纺织品表面缺陷检测设计的数据集,包含三种不同纹理类型的纺织品。数据集共有3975张正常图像和246张异常图像,其中3295张正常图像和所有246张异常图像用于测试,模拟了实际工业场景中的数据分布。
github 收录
LANDSLIDE DETECTION
该数据集专注于山体滑坡现象的识别与分类,旨在为改进YOLOv8模型提供高质量的训练数据。数据集包含1600幅图像,类别数量为1,具体类别为“LANDSLIDE”。数据集的构建考虑了山体滑坡的多样性与复杂性,确保模型在实际应用中具备良好的泛化能力。
github 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
NIH Chest X-rays
Over 112,000 Chest X-ray images from more than 30,000 unique patients
kaggle 收录
