科技创新及人民生活基本情况(2022年)
收藏Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
Other-Animals-10
该数据集包含103张图像,每张图像对应一个动物标签,标签类别包括熊、蜜蜂、甲虫等34种动物。数据集仅包含一个训练集,用于训练模型。
huggingface 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
Global Firepower Index (GFI)
Global Firepower Index (GFI) 是一个评估全球各国军事力量的综合指数。该指数考虑了超过50个因素,包括军事预算、人口、陆地面积、海军力量、空军力量、自然资源、后勤能力、地理位置等。数据集提供了每个国家的详细评分和排名,帮助分析和比较各国的军事实力。
www.globalfirepower.com 收录
Vehicle Energy Dataset (VED)
Vehicle Energy Dataset (VED)是由密歇根大学创建的一个大规模数据集,包含从2017年11月至2018年11月期间,在美国密歇根州安娜堡收集的383辆个人汽车的燃油和能量数据。该数据集捕捉了车辆的GPS轨迹以及燃油、能量、速度和辅助电源使用的时间序列数据。数据集中的车辆类型多样,包括264辆汽油车、92辆混合动力车和27辆插电式混合动力/电动车。VED数据集总里程约374,000英里,涵盖了从高速公路到交通密集的市中心区域等各种驾驶条件和季节。数据集创建过程中,研究团队通过安装在车辆上的OBD-II记录器收集数据,并对个人身份信息进行了去标识化处理,以保护参与者隐私。VED数据集的应用领域广泛,包括车辆能源消耗建模、驾驶员行为建模、机器学习和深度学习、交通模拟器的校准、最佳路线选择模型、人类驾驶员行为预测以及自动驾驶汽车的决策制定等。
arXiv 收录
