five

LSDSem/story_cloze|故事理解数据集|常识推理数据集

收藏
hugging_face2024-01-18 更新2024-06-15 收录
故事理解
常识推理
下载链接:
https://hf-mirror.com/datasets/LSDSem/story_cloze
下载链接
链接失效反馈
资源简介:
Story Cloze Test是一个新的常识推理框架,用于评估故事理解、故事生成和脚本学习。该测试要求系统为一个四句话的故事选择正确的结尾。
提供机构:
LSDSem
原始信息汇总

数据集概述

数据集描述

数据集摘要

Story Cloze Test 是一个用于评估故事理解、故事生成和脚本学习的常识推理框架。该测试要求系统从四个句子的故事中选择正确的结尾。

支持的任务和排行榜

  • 常识推理

语言

  • 英语

数据集结构

数据实例

一个训练实例的示例如下: json { "answer_right_ending": 1, "input_sentence_1": "Rick grew up in a troubled household.", "input_sentence_2": "He never found good support in family, and turned to gangs.", "input_sentence_3": "It wasnt long before Rick got shot in a robbery.", "input_sentence_4": "The incident caused him to turn a new leaf.", "sentence_quiz1": "He is happy now.", "sentence_quiz2": "He joined a gang.", "story_id": "138d5bfb-05cc-41e3-bf2c-fa85ebad14e2" }

数据字段

所有分割的数据字段相同:

  • input_sentence_1: 故事的第一句话。
  • input_sentence_2: 故事的第二句话。
  • input_sentence_3: 故事的第三句话。
  • input_sentence_4: 故事的第四句话。
  • sentence_quiz1: 故事的第一个可能的延续。
  • sentence_quiz2: 故事的第二个可能的延续。
  • answer_right_ending: 正确的可能结尾,值为1或2。
  • story_id: 故事的ID。

数据分割

名称 验证集 测试集
2016 1871 1871
2018 1571 -

数据集创建

数据集信息

  • 配置名称: 2016

    • 特征:
      • story_id: 字符串类型
      • input_sentence_1: 字符串类型
      • input_sentence_2: 字符串类型
      • input_sentence_3: 字符串类型
      • input_sentence_4: 字符串类型
      • sentence_quiz1: 字符串类型
      • sentence_quiz2: 字符串类型
      • answer_right_ending: 整数类型 (int32)
    • 分割:
      • validation: 614084字节, 1871个样本
      • test: 613184字节, 1871个样本
    • 下载大小: 0字节
    • 数据集大小: 1227268字节
  • 配置名称: 2018

    • 特征:
      • story_id: 字符串类型
      • input_sentence_1: 字符串类型
      • input_sentence_2: 字符串类型
      • input_sentence_3: 字符串类型
      • input_sentence_4: 字符串类型
      • sentence_quiz1: 字符串类型
      • sentence_quiz2: 字符串类型
      • answer_right_ending: 整数类型 (int32)
    • 分割:
      • validation: 515439字节, 1571个样本
    • 下载大小: 0字节
    • 数据集大小: 515439字节
AI搜集汇总
数据集介绍
main_image_url
构建方式
Story Cloze Test数据集的构建基于一个四句故事框架,旨在评估模型在故事理解和生成方面的能力。数据集通过提供一个四句故事和两个可能的结尾,要求模型选择正确的结尾。数据来源于原始故事,经过标准化处理后形成最终的数据集。数据集的构建过程注重故事的连贯性和逻辑性,确保每个故事结尾的选择具有明确的合理性。
特点
Story Cloze Test数据集的特点在于其专注于常识推理和故事理解。每个数据实例包含一个四句故事和两个可能的结尾,模型需要通过推理选择正确的结尾。数据集的语言为英语,规模适中,包含数千个数据实例。数据集的独特之处在于其强调故事的逻辑性和连贯性,为模型提供了一个具有挑战性的常识推理任务。
使用方法
Story Cloze Test数据集主要用于评估模型在故事理解和生成任务中的表现。研究人员可以通过加载数据集,使用模型对每个故事的两个结尾进行推理,并选择正确的结尾。数据集提供了验证集和测试集,便于模型在不同阶段进行评估。使用该数据集时,研究人员应关注模型的推理能力和对故事逻辑的理解,以提升模型在常识推理任务中的表现。
背景与挑战
背景概述
Story Cloze Test数据集由Nasrin Mostafazadeh等人于2017年提出,旨在评估机器对故事理解、生成及脚本学习的能力。该数据集的核心研究问题是通过四句话的故事,要求系统选择正确的结局,从而测试模型的常识推理能力。该数据集在自然语言处理领域具有重要影响力,特别是在故事理解和生成任务中,为研究者提供了一个标准化的评估框架。
当前挑战
Story Cloze Test数据集面临的挑战主要体现在两个方面。首先,该数据集旨在解决常识推理问题,但常识本身具有高度的复杂性和多样性,模型需要具备广泛的知识背景才能准确预测故事的结局。其次,在数据集的构建过程中,如何确保故事的连贯性和逻辑性,以及如何设计合理的结局选项,都是极具挑战性的任务。此外,数据集的规模相对较小,可能限制了模型的泛化能力,进一步增加了研究的难度。
常用场景
经典使用场景
在自然语言处理领域,Story Cloze Test数据集被广泛用于评估模型在故事理解和生成任务中的表现。通过提供一个四句话的故事背景,并要求模型从两个可能的结局中选择正确的结局,该数据集能够有效测试模型对上下文逻辑和常识推理的能力。这种任务设计不仅挑战了模型的语言理解能力,还推动了故事生成技术的发展。
实际应用
在实际应用中,Story Cloze Test数据集为开发智能对话系统和故事生成工具提供了重要支持。例如,在教育领域,基于该数据集训练的模型可以帮助学生理解故事逻辑并生成连贯的故事情节。在娱乐行业,该数据集可用于开发更具吸引力的互动故事应用,提升用户体验。此外,该数据集还为自动生成新闻摘要和个性化内容推荐提供了技术基础。
衍生相关工作
Story Cloze Test数据集催生了一系列相关研究,特别是在故事生成和常识推理领域。例如,基于该数据集的研究提出了多种改进模型推理能力的方法,如引入外部知识库和增强上下文建模。此外,该数据集还被用于开发新的评估指标,以更全面地衡量模型在复杂任务中的表现。这些工作不仅推动了自然语言处理技术的发展,还为相关领域的应用提供了新的思路。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

NuminaMath-CoT

数据集包含约86万道数学题目,每道题目的解答都采用思维链(Chain of Thought, CoT)格式。数据来源包括中国高中数学练习题以及美国和国际数学奥林匹克竞赛题目。数据主要从在线考试试卷PDF和数学讨论论坛收集。处理步骤包括从原始PDF中进行OCR识别、分割成问题-解答对、翻译成英文、重新对齐以生成CoT推理格式,以及最终答案格式化。

huggingface 收录