five

3D-POP|动物运动跟踪数据集|3D姿态分析数据集

收藏
github2024-05-03 更新2024-05-31 收录
动物运动跟踪
3D姿态分析
下载链接:
https://github.com/alexhang212/Dataset-3DPOP
下载链接
链接失效反馈
资源简介:
3D-POP(3D鸽子姿态)数据集是一个大规模数据集,提供个体身份和轨迹、边界框、2D和3D关键点的地面实况数据,适用于1到10个个体。该数据集在一个大规模的基于标记的运动跟踪设施中收集,具有4个摄像机视角。

The 3D-POP (3D Pigeon Pose) dataset is a large-scale dataset that provides ground truth data for individual identities and trajectories, bounding boxes, and 2D and 3D keypoints, suitable for 1 to 10 individuals. This dataset was collected in a large-scale marker-based motion tracking facility with four camera perspectives.
创建时间:
2023-03-09
原始信息汇总

3DPOP: 3D Posture of Pigeons Dataset

数据集概述

  • 名称: 3DPOP (3D Posture of Pigeons)
  • 类型: 大规模2D到3D姿态、身份和轨迹数据集
  • 对象: 自由移动的鸽子
  • 特点: 使用标记基运动跟踪技术,首先跟踪多个个体的精确头部和身体位置及方向,然后基于标记和关键点的相对位置传播自定义关键点。

数据集内容

  • 规模: 约300,000个标注帧(400万实例)
  • 格式: 视频,包含1到10只自由移动的鸽子
  • 视角: 4个不同摄像头视角
  • 区域: 3.6m x 4.2m
  • 标注: 包括边界框、2D和3D关键点及个体身份

数据集使用

  • 下载: 可通过此链接下载数据集,并放置于Dataset目录或自定义目录。
  • 依赖安装: 需先安装Anaconda,然后通过conda env create --file=environment.yml创建环境。

数据集工具

  • 3DPOP Reader: 提供数据集读取类,用于读取数据集。示例可见此链接
  • 3DPOP-AP: 提供标注管道实现,用于生成数据集的自定义关键点。详细信息见此链接

数据集更新

引用信息

@InProceedings{Naik_2023_CVPR, author = {Naik, Hemal and Chan, Alex Hoi Hang and Yang, Junran and Delacoux, Mathilde and Couzin, Iain D. and Kano, Fumihiro and Nagy, Mate}, title = {3D-POP - An Automated Annotation Approach to Facilitate Markerless 2D-3D Tracking of Freely Moving Birds With Marker-Based Motion Capture}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {21274-21284} }

AI搜集汇总
数据集介绍
main_image_url
构建方式
3D-POP数据集通过使用基于标记的运动捕捉系统,实现了对自由移动鸽子的2D和3D姿态、身份和轨迹的大规模采集。首先,利用标记点精确追踪鸽子的头部和身体位置及方向,随后基于标记点与关键点之间的相对位置关系,生成自定义的关键点。这一过程通过半自动化的方式,确保了数据的高精度和大规模覆盖,最终形成了包含约30万帧(400万实例)的视频数据集,涵盖了1至10只鸽子的群体行为,并从4个不同视角进行4K分辨率的拍摄。
使用方法
使用3D-POP数据集时,用户需先下载数据并将其放置在指定目录中。通过提供的3DPOP读取类,用户可以轻松访问和处理数据集中的视频帧、关键点、边界框等信息。此外,数据集还附带了详细的结构说明和示例代码,帮助用户进行自定义的数据处理和分析。为了确保兼容性,建议用户使用Anaconda创建环境并安装所需的依赖包。通过这些工具和资源,研究人员可以高效地利用3D-POP数据集进行动物行为分析和计算机视觉算法的开发。
背景与挑战
背景概述
3D-POP数据集是由德国康斯坦茨大学的高级集体行为研究中心的研究团队创建,旨在解决自由移动鸟类的无标记2D-3D姿态和轨迹跟踪问题。该数据集的核心研究问题是通过标记运动捕捉系统获取大量鸟类运动和姿态的注释数据,并利用这些数据推动无标记姿态跟踪技术的发展。3D-POP数据集包含了约30万帧的注释视频,涵盖了1到10只自由移动的鸽子,提供了2D和3D关键点、边界框以及个体身份信息。该数据集的发布标志着在鸟类行为研究领域的一个重要突破,为相关领域的研究提供了宝贵的资源。
当前挑战
3D-POP数据集在构建过程中面临了多个挑战。首先,如何通过标记运动捕捉系统准确获取鸟类的3D姿态和轨迹数据,并将其转化为无标记的2D-3D关键点注释,是一个技术难题。其次,数据集的规模庞大,涉及多个摄像机视角和4K分辨率的视频,如何高效处理和存储这些数据也是一个挑战。此外,确保数据集的注释准确性和一致性,尤其是在多视角和多鸟类场景下,也是一个复杂的问题。最后,如何将这些数据有效地应用于机器学习和计算机视觉算法中,以推动无标记姿态跟踪技术的发展,也是该数据集面临的一个重要挑战。
常用场景
经典使用场景
3D-POP数据集在动物行为研究领域中具有广泛的应用前景,尤其是在自由移动鸟类的2D到3D姿态跟踪方面。该数据集通过标记基于运动的跟踪系统,精确捕捉了鸽子的头部和身体位置及方向,并基于标记和关键点之间的相对位置生成自定义关键点。这一过程为研究人员提供了一个大规模的、包含个体身份、轨迹、2D和3D关键点的数据集,极大地促进了无标记姿态和轨迹跟踪技术的发展。
解决学术问题
3D-POP数据集解决了在动物行为研究中,尤其是鸟类群体行为研究中,缺乏大规模、高精度、多视角的2D到3D姿态和轨迹标注数据的问题。该数据集通过提供精确的3D关键点标注,帮助研究人员更好地理解和分析鸟类的群体行为模式,推动了计算机视觉和机器学习技术在动物行为学中的应用,具有重要的学术价值和研究意义。
实际应用
在实际应用中,3D-POP数据集可广泛应用于动物行为学、生态学和计算机视觉领域。例如,研究人员可以利用该数据集开发和验证新的算法,用于无标记的鸟类姿态和轨迹跟踪,从而在野生动物保护、生态监测和动物行为研究中发挥重要作用。此外,该数据集还可用于训练和测试人工智能模型,以提高对自由移动动物的识别和跟踪能力。
数据集最近研究
最新研究方向
在动物行为研究领域,3D-POP数据集的最新研究方向主要集中在利用机器学习和计算机视觉技术实现无标记的2D-3D姿态跟踪。该数据集通过标记运动捕捉系统生成大量带有精确2D和3D关键点标注的图像,支持自由移动鸟类的姿态和轨迹跟踪。这一研究不仅推动了动物行为分析的自动化进程,还为解决无标记姿态跟踪和个体识别问题提供了新的数据支持。此外,3D-POP数据集的更新和扩展,如新增的6036张样本图像,进一步丰富了该领域的研究资源,促进了相关算法和模型的优化与验证。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录