five

培训检查两手抓 稳步提升农村垃圾分类水平|农村垃圾分类数据集|培训检查数据集

收藏
北京市公共数据开放平台2024-04-21 收录
农村垃圾分类
培训检查
下载链接:
http://data.beijing.gov.cn/zyml/qjsw/fsq/3e213271aaea4e3b94cd82bc44fa9b16.htm
下载链接
链接失效反馈
资源简介:
该数据是房山区提供的培训检查两手抓 稳步提升农村垃圾分类水平信息,包括1个文本。
提供机构:
房山区
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

GLUCOBENCH

GLUCOBENCH是由德克萨斯A&M大学统计系和电气与计算机工程系共同创建的一个综合数据集,旨在为连续血糖监测(CGM)数据的预测模型提供标准化的评估平台。该数据集包含五个公开的CGM数据集,涵盖不同规模和人口特征,数据量从5个到超过200个患者不等。数据集的创建过程包括数据预处理、插值和分割,确保数据质量。GLUCOBENCH主要应用于糖尿病管理领域,旨在通过提高血糖轨迹预测的准确性和不确定性量化,改善糖尿病患者的治疗效果和自主管理能力。

arXiv 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录