five

Spatial Study 2021: Sensor-Based Time Series of Surface Water Temperature, Specific Conductance, Total Dissolved Solids, Turbidity, pH, and Dissolved Oxygen from across Multiple Watersheds in the Yakima River Basin, Washington, USA (v2)

收藏
DataONE2023-11-16 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/ess-dive-bf46fe8d9d1ca1d-20231116T192239821
下载链接
链接失效反馈
资源简介:
This dataset supports a broader study examining the drivers of spatial variability in sediment respiration rates in the Yakima River Basin. We acknowledge the Yakama Nation as owners and caretakers of the lands where we collected the data used in this project. We thank the Confederated Tribes and Bands of the Yakama Nation Tribal Council and Yakama Nation Fisheries for working with us to facilitate sample collection and optimization of data usage according to their values and worldview. The dataset provides two-hour time series hydrological and water chemistry sensor data, manual chamber open channel respiration data, handheld sensor water chemistry data, river substrate grain size photos, general environmental context photos, and field metadata (including qualitative information on instream and river corridor characteristics) collected during the same two-week period at 47 sites in multiple rivers throughout the Yakima River Basin in Washington, USA. Grain size photos can be used to improve estimates of channel substrate D50 data. In addition to the sensor data, there are plots of two-hour time series sensor data and R scripts used to generate the plots. Related sample-based water chemistry data will be published separately and can be used to link sediment respiration rates to biogeochemical processing rates. This dataset is comprised of four main folders, one containing three sensor-specific subfolders and the others containing photographs. The SFA_SpatialStudy_2021_SensorData main data folder includes file-level metadata (FLMD), data dictionary (dd), installation methods, field metadata, manual summary data, field data collection protocols, R scripts for creating plots, international geo-sample number (IGSN) mapping file, and a readme file. Each sensor subfolder (BarotrollAtm, MantaRiver, and MinidotManualChamber) contains a sensor data subfolder and a subfolder for plots and summary statistics. The BarotrollAtm Data subfolder contains In Situ Rugged BaroTROLL pressure and temperature data. The MantaRiver Data subfolder contains Eureka Manta+ 35B multisonde temperature, specific conductance, turbidity, and pH data. The MinidotManualChamber Data subfolder contains PME MiniDOT Logger dissolved oxygen (mg/L and percent saturation) and temperature data. The folder SFA_SpatialStudy_2021_EnvironmentalContextPhotos contains environmental context photographs and videos. The folders SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part1 and SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part2 contain sediment quadrat photographs. All files are .csv, .pdf, .R, .jpg, .jpeg, .mp4, or .mov. This data package was originally published in September 2022. It was updated in January 2023 (v2). See the change history section in the data package readme for more details.
创建时间:
2023-11-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

ICLR Peer Review and Rebuttal Process Dataset

该数据集包含从ICLR 2024和2025年收集的同行评审和反驳过程数据,数据来自OpenReview平台,包括评审者ID、初始评分和反驳后评分。评审者评分变化被追踪,使用追踪分数指标来评估评审者连续性,分数≤1表示有效使用,≥2需双重检查。数据许可证为CC BY 4.0。

github 收录

PTB-Image

PTB-Image是一个包含扫描纸质心电图和相应数字信号的综合数据集,由越南河内VinUniversity College of Engineering and Computer Science和VinUni-Illinois Smart Health Center创建。该数据集旨在推动心电图数字化技术的研究,包含549个记录,每个记录由一位至五位患者的15个同步心电图信号组成,涵盖标准12导联心电图和Frank导联。数据集通过扫描原始PTB数据集的纸质心电图并打印部分信号制作而成,可用于心电图数字化、自动诊断及远程医疗等领域的应用研究。

arXiv 收录

BDD100K

数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。

OpenDataLab 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录