five

Spatial Study 2021: Sensor-Based Time Series of Surface Water Temperature, Specific Conductance, Total Dissolved Solids, Turbidity, pH, and Dissolved Oxygen from across Multiple Watersheds in the Yakima River Basin, Washington, USA (v2)

收藏
DataONE2023-11-16 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/ess-dive-bf46fe8d9d1ca1d-20231116T192239821
下载链接
链接失效反馈
资源简介:
This dataset supports a broader study examining the drivers of spatial variability in sediment respiration rates in the Yakima River Basin. We acknowledge the Yakama Nation as owners and caretakers of the lands where we collected the data used in this project. We thank the Confederated Tribes and Bands of the Yakama Nation Tribal Council and Yakama Nation Fisheries for working with us to facilitate sample collection and optimization of data usage according to their values and worldview. The dataset provides two-hour time series hydrological and water chemistry sensor data, manual chamber open channel respiration data, handheld sensor water chemistry data, river substrate grain size photos, general environmental context photos, and field metadata (including qualitative information on instream and river corridor characteristics) collected during the same two-week period at 47 sites in multiple rivers throughout the Yakima River Basin in Washington, USA. Grain size photos can be used to improve estimates of channel substrate D50 data. In addition to the sensor data, there are plots of two-hour time series sensor data and R scripts used to generate the plots. Related sample-based water chemistry data will be published separately and can be used to link sediment respiration rates to biogeochemical processing rates. This dataset is comprised of four main folders, one containing three sensor-specific subfolders and the others containing photographs. The SFA_SpatialStudy_2021_SensorData main data folder includes file-level metadata (FLMD), data dictionary (dd), installation methods, field metadata, manual summary data, field data collection protocols, R scripts for creating plots, international geo-sample number (IGSN) mapping file, and a readme file. Each sensor subfolder (BarotrollAtm, MantaRiver, and MinidotManualChamber) contains a sensor data subfolder and a subfolder for plots and summary statistics. The BarotrollAtm Data subfolder contains In Situ Rugged BaroTROLL pressure and temperature data. The MantaRiver Data subfolder contains Eureka Manta+ 35B multisonde temperature, specific conductance, turbidity, and pH data. The MinidotManualChamber Data subfolder contains PME MiniDOT Logger dissolved oxygen (mg/L and percent saturation) and temperature data. The folder SFA_SpatialStudy_2021_EnvironmentalContextPhotos contains environmental context photographs and videos. The folders SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part1 and SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part2 contain sediment quadrat photographs. All files are .csv, .pdf, .R, .jpg, .jpeg, .mp4, or .mov. This data package was originally published in September 2022. It was updated in January 2023 (v2). See the change history section in the data package readme for more details.
创建时间:
2023-11-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录