five

Spatial Study 2021: Sensor-Based Time Series of Surface Water Temperature, Specific Conductance, Total Dissolved Solids, Turbidity, pH, and Dissolved Oxygen from across Multiple Watersheds in the Yakima River Basin, Washington, USA (v2)

收藏
DataONE2023-11-16 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/ess-dive-bf46fe8d9d1ca1d-20231116T192239821
下载链接
链接失效反馈
资源简介:
This dataset supports a broader study examining the drivers of spatial variability in sediment respiration rates in the Yakima River Basin. We acknowledge the Yakama Nation as owners and caretakers of the lands where we collected the data used in this project. We thank the Confederated Tribes and Bands of the Yakama Nation Tribal Council and Yakama Nation Fisheries for working with us to facilitate sample collection and optimization of data usage according to their values and worldview. The dataset provides two-hour time series hydrological and water chemistry sensor data, manual chamber open channel respiration data, handheld sensor water chemistry data, river substrate grain size photos, general environmental context photos, and field metadata (including qualitative information on instream and river corridor characteristics) collected during the same two-week period at 47 sites in multiple rivers throughout the Yakima River Basin in Washington, USA. Grain size photos can be used to improve estimates of channel substrate D50 data. In addition to the sensor data, there are plots of two-hour time series sensor data and R scripts used to generate the plots. Related sample-based water chemistry data will be published separately and can be used to link sediment respiration rates to biogeochemical processing rates. This dataset is comprised of four main folders, one containing three sensor-specific subfolders and the others containing photographs. The SFA_SpatialStudy_2021_SensorData main data folder includes file-level metadata (FLMD), data dictionary (dd), installation methods, field metadata, manual summary data, field data collection protocols, R scripts for creating plots, international geo-sample number (IGSN) mapping file, and a readme file. Each sensor subfolder (BarotrollAtm, MantaRiver, and MinidotManualChamber) contains a sensor data subfolder and a subfolder for plots and summary statistics. The BarotrollAtm Data subfolder contains In Situ Rugged BaroTROLL pressure and temperature data. The MantaRiver Data subfolder contains Eureka Manta+ 35B multisonde temperature, specific conductance, turbidity, and pH data. The MinidotManualChamber Data subfolder contains PME MiniDOT Logger dissolved oxygen (mg/L and percent saturation) and temperature data. The folder SFA_SpatialStudy_2021_EnvironmentalContextPhotos contains environmental context photographs and videos. The folders SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part1 and SFA_SpatialStudy_2021_SedimentQuadratPhotos_Part2 contain sediment quadrat photographs. All files are .csv, .pdf, .R, .jpg, .jpeg, .mp4, or .mov. This data package was originally published in September 2022. It was updated in January 2023 (v2). See the change history section in the data package readme for more details.
创建时间:
2023-11-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

MIDV-500

该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。

arXiv 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录