five

Automatized analytic continuation of Mellin–Barnes integrals |高能物理数据集|数值计算数据集

收藏
Mendeley Data2023-02-23 更新2024-06-26 收录
高能物理
数值计算
下载链接:
https://data.mendeley.com/datasets/mmtpdx84sx
下载链接
链接失效反馈
资源简介:
Abstract This paper describe a package written in MATHEMATICA that automatizes typical operations performed during evaluation of Feynman graphs with Mellin–Barnes (MB) techniques. The main procedure allows to analytically continue a MB integral in a given parameter without any intervention from the user and thus to resolve the singularity structure in this parameter. The package can also perform numerical integrations at specified kinematic points, as long as the integrands have satisfactory convergen... Title of program: MB Catalogue Id: ADYG_v1_0 Nature of problem Analytic continuation of Mellin-Barnes integrals in a parameter and subsequent numerical evaluation. This is necessary for evaluation of Feynman integrals from Mellin-Barnes representations. Versions of this program held in the CPC repository in Mendeley Data ADYG_v1_0; MB; 10.1016/j.cpc.2006.07.002 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019)
创建时间:
2020-01-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

NIRS_DataSets

包含多个近红外光谱相关的数据集,用于分析和预测不同物质的特性,如药物成分、食品老化、谷物蛋白质等。

github 收录

中国高考录取分数线数据

  高考录取分数线,是指普通高等学校招生全国统一考试录取分数线。该分数线,每年高考结束后,由省级教育招生主管部门统计后公布。高考录取分数线分为本科线和专科线。全国各个地方的录取线分科类、分批次确定,科类一般分为文科类、理科类、音乐类(文、理)、美术类(文、理)、体育类等,每一科类又各分为提前批、第一批、第二批等等。  CnOpenData推出中国高考录取分数线数据,从批次、学校、专业等三方面汇总高考录取情况,涵盖生源地、学校所在地、年份、分类、批次、分科、分数线、学校、专业、录取人数、最高/低分等字段,为相关研究提供优质的数据资源。

CnOpenData 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录