five

Topical or oral antibiotics for children with acute otitis media presenting with ear discharge: a randomised controlled non-inferiority trial|临床试验数据集|儿童健康数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
临床试验
儿童健康
下载链接:
https://dataverse.nl/citation?persistentId=doi:10.34894/J4KPP1
下载链接
链接失效反馈
资源简介:
The PLOTS trial is a primary care-based, open randomised, controlled non-inferiority trial. Children presenting with AOMd and ear pain and/or fever were assigned to hydrocortisone-bacitracin-colistin eardrops (five drops, three times per day in the discharging ear(s)) or amoxicillin oral suspension (50 mg/kg body weight per day, divided over three doses) for 7 days. From December 2017 until March 2023, 58 children aged 6 months to 12 years were enrolled. Due to supply issues of the study medication, the trial was put on hold from 8 August 2018 through November 2021. The rationale and design haven been reported in detail elsewhere (see related publication). At baseline and after 2 weeks home visit data was collected. During these visits physical examination, including otoscopy was performed. Children were followed during 3 months. The first two weeks parents kept a daily diary of AOM-related symptoms, adverse events and complications. Thereafter, they kept a weekly diary recording AOM-recurrences, GP consultations, medications use, hospitals admissions and societal costs for AOM for 3 months. Parents completed the OM-specific QoL (OM-6) questionnaire at baseline, 2 weeks and at 3 months and a productivity loss questionnaires (iPCQ) at 2 weeks, 6 weeks and 3 months. In the metadata file all the variables are described. The data are sensitive since they involve personal information of patients. There are also restrictions on use by commercial parties, and on sharing openly based on (inter)national laws and regulations and written informed consent. Therefore these data (and additional clinical data) are only available after PI’s approval and upon signing a Data Sharing Agreement (see Terms of Access) and within a specially designed environment provided by the UMC Utrecht
创建时间:
2023-09-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

集装箱数据集

集装箱数据集,包含3500张1080p集装箱图像以及其编码区的xml标注

AI_Studio 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录