five

Governments' Responses to COVID-19 (Response2covid19)|COVID-19响应数据集|政府政策数据集

收藏
Mendeley Data2024-03-27 更新2024-06-30 收录
COVID-19响应
政府政策
下载链接:
https://www.openicpsr.org/openicpsr/project/119061/version/V6/view
下载链接
链接失效反馈
资源简介:
Presence of Common Scales: country: name of the country or the territory; geodi: two-letters country code; iso: three-letters country code; d: date of the observation; cases: number of cases reported on the given day by the European Centre for Disease Prevention and Control; deaths: number of deaths reported on the given day by the European Centre for Disease Prevention and Control; school: binary variable equal to1 if schools were closed and 0 otherwise; school_local: binary flag to distinguish localized school closures from other cases. 1 denotes that school closures were implemented at the local level and 0 denotes that school closures were not implemented at the local level (either at the national level or no school closures). The data on the scale of school closures is imported from the UNESCO. The interaction of school and school_local allows researchers to create three levels of measures: no school closures (school=0 and school_local=0), localized school closures (school=1 and school_local==1) or national school closures (school=1 and school_local=0); domestic: binary variable equal to 1 if there was a domestic lockdown and 0 otherwise; domestic_local: binary variable to distinguish localized domestic lockdowns from other cases. 1 denotes that domestic lockdowns were implemented at the local level and 0 means that domestic lockdowns were not implemented at the local-level (either at the national level or not implemented). The nature of the domestic lockdown is based on our reading of the measures reported by the ACAPS. The interaction of domestic and domestic_local allows researchers to create three levels of measures: no domestic lockdown (domestic=0 and domestic_local=0), localized domestic lockdowns (domestic=1 and domestic_local=1) or national domestic lockdowns (domestic=1 and domestic_local=0); travel: binary variable equal to1 if travel restrictions were implemented and 0 otherwise; travel_partial: binary flag to differentiate partial travel restrictions from other cases. 1 denotes that travel restrictions were partial and 0 denotes that travel restrictions were not partial (either strict or not implemented). The nature of the travel restrictions is based on our reading of the measures reported by the ACAPS. The interaction of travel and travel_partial allows researchers to create three levels of measures: no travel restrictions (travel=0 and travel_partial=0), partial travel restrictions (travel=1 and travel_partial=1) or strict travel restrictions (travel=1 and travel_partial=0); travel_dom: binary variable equal to1 if travel restrictions within the country (e.g. inter-region travels) were implemented and 0 otherwise; travel_dom_partial: binary flag to differentiate partial domestic travel restrictions from other cases. 1 denotes that travel restrictions were partial and 0 denotes that travel restrictions were not partial (either strict or not implemented). The nature of the travel restrictions is based on our reading of the measures reported by the ACAPS. The interaction of travel and travel_partial allows researchers to create three levels of measures: no domestic travel restrictions (travel_dom=0 and travel_dom_partial=0), partial domestic travel restrictions (travel_dom=1 and travel_dom_partial=1) or strict domestic travel restrictions (travel_dom=1 and travel_dom_partial=0); curf: binary variable equal to1 if a curfew was implemented and 0 otherwise; curf_partial: binary flag to differentiate partial curfews from other cases. 1 denotes that the curfew was partial and 0 denotes that the curfew was not partial (either strict or not implemented). The nature of the curfew is based on our reading of the measures reported by the ACAPS. The interaction of curf and curf_partial allows researchers to create three levels of measures: no curfew (curf=0 and curf_partial=0), partial curfew (curf=1 and curf_partial=1) or strict curfew (curf=1 and curf_partial=0); mass: binary variable equal to1 if bans on mass gatherings were implemented and 0 otherwise; mass_partial: binary flag to distinguish localized bans on mass gatherings from other cases. 1 denotes that bans on mass gatherings were partial and 0 denotes that bans on mass gatherings were not partial (either strict or not implemented). The nature of the bans on mass gatherings is based on our reading of the measures reported by the ACAPS. The interaction of mass and mass_partial allows researchers to create three levels of measures: no bans on mass gatherings (mass=0 and mass_partial=0), localized or partial bans (mass=1 and mass_partial=1) or national or strict bans (mass=1 and mass_partial=0); elect: binary variable equal to1 if some elections were postponed and 0 otherwise; elect_partial: binary flag to differentiate countries which postponed only some of the elections from the others. 1 denotes that countries both maintained and postponed elections and 0 denotes that elections were either postponed, maintained or were not scheduled. IDEA lists all maintained and postponed elections since the beginning of 2020. The interaction of elect and elect_partial allows researchers to differentiate three settings: all elections were maintained despite COVID-19 (elect=0 and elect_partial=0), some elections were maintained and others were postponed (elect=1 and elect_partial=1) or all elections were postponed (elect=1 and elect_partial=0); sport: binary variable equal to1 if bans on sporting and large events were implemented and 0 otherwise; sport_partial: binary flag to distinguish partial bans and cancellations of sporting and large events. 1 denotes that bans on sporting and large events were localized, strict or with no spectators, 0 that bans on sporting and large events are not localized or partial (either national or no measures implemented). The nature of the bans on sporting and large events is based on our reading of the measures reported by the ACAPS. The interaction of sport and sport_partial allows researchers to create three levels of measures: no bans (sport=0 and sport_partial=0), partial bans (sport=1 and sport_partial=1) or national bans on mass gatherings (sport=1 and sport_partial=0); rest: binary variable equal to1 if restaurants were closed and 0 otherwise; rest_local: binary flag to distinguish localized and/or partial restaurant and bar closures from other cases. The variable is coded 1 in the three following situations: localized closures, limitations on the number of customers in bars and restaurants, and closures of either bars or restaurants. 0 indicates national closures or no closures at all. The coding is based on our reading of the measures reported by the ACAPS. The interaction of rest and rest_local allows researchers to create three levels of measures: no closures (rest=0 and rest_local=0), localized closures (rest=1 and rest_local=1) or national closures (rest=1 and rest_local=0); testing: binary variable equal to1 if there was a public testing policy and 0 otherwise; testing_narrow: binary flag to distinguish narrow testing policies from large testing policies. 1 denotes that testing policies were targeted to some individuals, 0 that testing policies were not targeted (either large or not implemented). The nature of the testing policy is based on the information reported in the measures “mass population testing” and “testing policy” in the ACAPS. When the measure was targeted, testing_narrow was coded 1. On the contrary, when the measure was not targeted, testing_narrow was coded 0. The interaction of testing and testing_narrow allows researchers to create three levels of measures: no testing policy (testing=0 and testing_narrow =0), narrow testing policy (testing=1 and testing_narrow =1) or large testing policy (testing=1 and testing_narrow =0); surveillance: binary variable equal to1 if mobile app or bracelet surveillance was implemented and 0 otherwise; surveillance_partial: binary variable equal to1 if the enhanced surveillance is optional or reserved for a category of person (e.g. certain professions or foreigners) and 0 otherwise, based on information in the ACAPS. When the measure was partial, surveillance_partial was coded 1. On the contrary, when the measure was strict (anybody suspected of having COVID-19), surveillance_partial was coded 0. The interaction of surveillance and surveillance_partial allows researchers to create three levels of measures: no surveillance (surveillance=0 and surveillance_partial =0), partial surveillance (surveillance=1 and surveillance_partial=1) or strict surveillance (surveillance=1 and surveillance_partial =0); masks : binary variable equal to1 if mandates to wear masks in public spaces were implemented and 0 otherwise; masks_partial: binary variable equal to1 if the obligation to wear masks is regional, based on information in the ACAPS. When the measure was regional, masks_partial was coded 1. On the contrary, when the measure was national, masks_partial was coded 0. The interaction of masks and masks_partial allows researchers to create three levels of measures: no obligations to wear masks (masks=0 and masks_partial =0), regional obligations to wear masks (masks=1 and masks_partial=1) or national obligations to wear masks (masks=1 and masks_partial =0); state: binary variable equal to1 if the state of emergency is declared and 0 otherwise; state_partial: binary variable equal to1 if the state of emergency is declared on a local basis and 0 otherwise, based on information in the ACAPS. When the measure was local, state_partial was coded 1. On the contrary, when the measure was not localized, state_partial was coded 0. The interaction of state and state_partial allows researchers to create three levels of measures: no state of emergency (state=0 and state_partial =0), partial state of emergency (state=1 and state_partial=1) or national state of emergency (state=1 and state_partial =0); cash: binary variable equal to1 if cash transfers are implemented and 0 otherwise; wage: binary variable equal to1 if wage support is implemented and 0 otherwise; credit: binary variable equal to1 if credit schemes are implemented and 0 otherwise; taxc: binary variable equal to1 if tax credits are implemented and 0 otherwise; taxd: binary variable equal to1 if tax delays are implemented and 0 otherwise; export: binary variable equal to1 if supports to importers or exporters are implemented and 0 otherwise; rate: binary variable equal to1 if the Central Bank lowered the interest rates and 0 otherwise; Rigidity_Public_Health: average of the ten coded public health measures. Public health measures are valued 0.5 if they are localized or partial and 1 if they are national or strict. 0 indicates no measures; Economic_Measures: average of the coded economic measures.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录

spawn99/CornellMovieDialogCorpus

该数据集包含从原始电影脚本中提取的元数据丰富的虚构对话集合。数据集包括10,292对电影角色之间的220,579次对话交换,涉及617部电影中的9,035个角色,总共有304,713条对话。数据集还包括电影元数据(如类型、发行年份、IMDB评分、IMDB投票数)和角色元数据(如性别、片尾字幕位置)。

hugging_face 收录

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录