five

Hybrid Enterobacteriaceae assemblies using PacBio+Illumina or ONT+Illumina sequencing|基因组组装数据集|测序技术数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
基因组组装
测序技术
下载链接:
https://figshare.com/articles/dataset/Hybrid_Enterobacteriaceae_assemblies_using_PacBio_Illumina_or_ONT_Illumina_sequencing/7649051/3
下载链接
链接失效反馈
资源简介:
Data associated with: De Maio, Shaw, et al. on behalf of the REHAB consortium (2019), Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. biorxiv 530824 Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods impact on assembly accuracy. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or from SMRT Pacific Biosciences (PacBio) sequencing platforms. This set of files includes all hybrid assemblies produced using Unicycler with different sequencing approaches and strategies. Each isolate has 8 hybrid assemblies = 4 x ONT-Illumina + 4 x PacBio-Illumina. There are a total of 158 hybrid assemblies from the full data as two assemblies did not finish (8x20 - 2 = 160 - 2 = 158). Additionally, there are Assemblies were produced from different long read preparation strategies. Hybrid assemblies with Unicycler (n1 = 158): • Basic: no filtering or correction of reads (i.e. all long reads available used for assembly). • Corrected: Long reads were error-corrected and subsampled (preferentially selecting longest reads) to 30-40x coverage using Canu (v1.5, https://github.com/marbl/canu) with default options. • Filtered: long reads were filtered using Filtlong (v0.1.1, https://github.com/rrwick/Filtlong) by using Illumina reads as an external reference for read quality and either removing 10% of the worst reads or by retaining 500Mbp in total, whichever resulted in fewer reads. We also removed reads shorter than 1kb and used the --trim and --split 250 options. • Subsampled: we randomly subsampled long reads to leave approximately 600Mbp (corresponding to a long read coverage around 100x). Long-read only assemblies (n2 = 20 x 2 x 2 = 80):• Flye: we ran Flye (https://github.com/fenderglass/Flye) with the options --plasmids --meta, which have been shown to improve the assemblies of plasmids in bacterial genomes (see: https://github.com/rrwick/Long-read-assembler-comparison) • Pilon: the Flye assemblies were then polished with Illumina short-reads using Pilon (https://github.com/broadinstitute/pilon). Assembly file names have the following format: ${sample-name}_${preparation-strategy}_${long-read-sequencing}.fastae.g. for sample CFT073 the filtered PacBio-Illumina assembly is: CFT073_filtered_pacbio.fasta Also included are assemblies produced after subsampling long-read data to ~10X genome coverage for the following strategies: "basic" (hybrid) and long-read ("flye" and "pilon"). There are n3 = 20 x 3 x 2 = 120 of these assemblies. These have a '10X' preceding the preparation strategy. The total number of assemblies is n1+n2+n3=158+80+120=358. See the associated preprint for more details: https://doi.org/10.1101/530824
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

基于站点观测的中国1km土壤湿度日尺度数据集(2000-2022)

本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2022年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度,数据单位为0.001m³/m³,缺失值为-999,投影为WGS1984。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land气象强迫数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。本研究进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,本研究提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。

国家青藏高原科学数据中心 收录

开源PHM数据集

本文分享了一个全球各大学、研究机构和公司捐赠的PHM(Prognostics and Health Management)开源数据集,涵盖加工制造、轨道交通、能源电力和半导体等行业的多种场景,包含部件级、设备级和产线级数据。用户可以利用这些数据开发智能分析和建模算法,数据集分类包括故障诊断、健康评估和寿命预测。

github 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录