five

Hybrid Enterobacteriaceae assemblies using PacBio+Illumina or ONT+Illumina sequencing|基因组组装数据集|测序技术数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
基因组组装
测序技术
下载链接:
https://figshare.com/articles/dataset/Hybrid_Enterobacteriaceae_assemblies_using_PacBio_Illumina_or_ONT_Illumina_sequencing/7649051/3
下载链接
链接失效反馈
资源简介:
Data associated with: De Maio, Shaw, et al. on behalf of the REHAB consortium (2019), Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. biorxiv 530824 Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods impact on assembly accuracy. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or from SMRT Pacific Biosciences (PacBio) sequencing platforms. This set of files includes all hybrid assemblies produced using Unicycler with different sequencing approaches and strategies. Each isolate has 8 hybrid assemblies = 4 x ONT-Illumina + 4 x PacBio-Illumina. There are a total of 158 hybrid assemblies from the full data as two assemblies did not finish (8x20 - 2 = 160 - 2 = 158). Additionally, there are Assemblies were produced from different long read preparation strategies. Hybrid assemblies with Unicycler (n1 = 158): • Basic: no filtering or correction of reads (i.e. all long reads available used for assembly). • Corrected: Long reads were error-corrected and subsampled (preferentially selecting longest reads) to 30-40x coverage using Canu (v1.5, https://github.com/marbl/canu) with default options. • Filtered: long reads were filtered using Filtlong (v0.1.1, https://github.com/rrwick/Filtlong) by using Illumina reads as an external reference for read quality and either removing 10% of the worst reads or by retaining 500Mbp in total, whichever resulted in fewer reads. We also removed reads shorter than 1kb and used the --trim and --split 250 options. • Subsampled: we randomly subsampled long reads to leave approximately 600Mbp (corresponding to a long read coverage around 100x). Long-read only assemblies (n2 = 20 x 2 x 2 = 80):• Flye: we ran Flye (https://github.com/fenderglass/Flye) with the options --plasmids --meta, which have been shown to improve the assemblies of plasmids in bacterial genomes (see: https://github.com/rrwick/Long-read-assembler-comparison) • Pilon: the Flye assemblies were then polished with Illumina short-reads using Pilon (https://github.com/broadinstitute/pilon). Assembly file names have the following format: ${sample-name}_${preparation-strategy}_${long-read-sequencing}.fastae.g. for sample CFT073 the filtered PacBio-Illumina assembly is: CFT073_filtered_pacbio.fasta Also included are assemblies produced after subsampling long-read data to ~10X genome coverage for the following strategies: "basic" (hybrid) and long-read ("flye" and "pilon"). There are n3 = 20 x 3 x 2 = 120 of these assemblies. These have a '10X' preceding the preparation strategy. The total number of assemblies is n1+n2+n3=158+80+120=358. See the associated preprint for more details: https://doi.org/10.1101/530824
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

核电厂焊缝射线质量智能评定模型数据

1.对核电厂焊缝射线质量、缺陷进行智能精准识别与评定,为核电厂焊缝射线质量智能评定模型提供训练数据,提高核电厂焊缝射线评定标准的准确性,进一步提升核电厂焊缝射线质量。 2.能够为核电厂焊缝质量控制提供决策依据,通过焊缝质量、缺陷训练数据持续优化模型检测标准,进一步保障核电站设备安全和长期稳定运行。数据收集和处理: 步骤1数据收集:方式一:通过使用数字射线检测设备采集获取原始焊缝图像数据;方式二:通过高分辨率扫描设备对传统射线底片影像数据转化为原始焊缝图像数据。 步骤2数据处理:对收集到的原始焊缝图像数据进行图像预处理,去除图像噪声、矫正图像畸变,统一图像尺寸(将图像的高度(imageHeight)和宽度(imageWidth)统一为3580×780(像素),确保原始焊缝图像数据质量和一致性。 步骤3数据标注:使用图像标注工具对原始焊缝图像数据的Filename(文件名)、Shapes(形状)、imagePath(路径)、imageData(图像数据)、imageHeight(图像高度)、imageWidth(图像宽度)等字段进行数据标注。其中:Filename(文件名)按照image_XXX.json按序号依次标注;Shapes(形状)字段中的label(标签)用于标注缺陷类型,缺陷类型标签包括5个缺陷等级:liewen(裂纹)、qikong(气孔)、jiazha(夹渣)、weironghe(未熔合)、weihantou(未焊透),points(位置)用于标记缺陷在图像中的位置,通过坐标的形式进行标注,shape_type(形状类型)为用于框选缺陷的形状,在本数据标注过程中均使用rectangle(矩形)框进行框选,在同一个焊缝图像数据中可能存在多个缺陷,在进行数据标注的过程中Shapes(形状)可能包含多个缺陷;imagePath(路径)用于标记生成标注文件的存储位置,存储在图像的同一路径(文件夹)下;imageData(图像数据)为对通过数据收集阶段获取到的原始焊缝图像数据进行标注,按照image_XXX.tiff进行命名存储;对图像高度(imageHeight)和宽度(imageWidth)分别标注为3580和780。通过以上数据标注过程确保为后续模型训练提供高质量的标注数据。 通过使用核电厂焊缝射线质量智能评定模型数据能够构建例如:卷积神经网络(CNN)的自动识别模型,实现核电厂焊缝射线图像缺陷的自动识别并和缺陷类型的标注,辅助人工评定工作,提升检测效率和准确度。

浙江省数据知识产权登记平台 收录

Salinas

Salinas数据集是一个高光谱遥感图像数据集,包含16个波段,覆盖了加利福尼亚州Salinas山谷的农业区域。该数据集主要用于高光谱图像分类和土地覆盖分析。

www.ehu.eus 收录

Nikkei 225

Nikkei 225,又称日经225指数,是日本东京证券交易所的一个重要股票市场指数,由225家日本大型上市公司组成。该指数是衡量日本股市表现的重要指标,涵盖了从制造业到服务业的多个行业。

indexes.nikkei.co.jp 收录

TROPOMI

TROPOMI(Tropospheric Monitoring Instrument)数据集包含大气成分的观测数据,主要用于监测臭氧、二氧化氮、甲醛、甲烷、二氧化碳等气体,以及气溶胶和云层。这些数据有助于研究空气质量、气候变化和环境监测。

www.tropomi.eu 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录