five

Hybrid Enterobacteriaceae assemblies using PacBio+Illumina or ONT+Illumina sequencing|基因组组装数据集|测序技术数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
基因组组装
测序技术
下载链接:
https://figshare.com/articles/dataset/Hybrid_Enterobacteriaceae_assemblies_using_PacBio_Illumina_or_ONT_Illumina_sequencing/7649051/3
下载链接
链接失效反馈
资源简介:
Data associated with: De Maio, Shaw, et al. on behalf of the REHAB consortium (2019), Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. biorxiv 530824 Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods impact on assembly accuracy. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or from SMRT Pacific Biosciences (PacBio) sequencing platforms. This set of files includes all hybrid assemblies produced using Unicycler with different sequencing approaches and strategies. Each isolate has 8 hybrid assemblies = 4 x ONT-Illumina + 4 x PacBio-Illumina. There are a total of 158 hybrid assemblies from the full data as two assemblies did not finish (8x20 - 2 = 160 - 2 = 158). Additionally, there are Assemblies were produced from different long read preparation strategies. Hybrid assemblies with Unicycler (n1 = 158): • Basic: no filtering or correction of reads (i.e. all long reads available used for assembly). • Corrected: Long reads were error-corrected and subsampled (preferentially selecting longest reads) to 30-40x coverage using Canu (v1.5, https://github.com/marbl/canu) with default options. • Filtered: long reads were filtered using Filtlong (v0.1.1, https://github.com/rrwick/Filtlong) by using Illumina reads as an external reference for read quality and either removing 10% of the worst reads or by retaining 500Mbp in total, whichever resulted in fewer reads. We also removed reads shorter than 1kb and used the --trim and --split 250 options. • Subsampled: we randomly subsampled long reads to leave approximately 600Mbp (corresponding to a long read coverage around 100x). Long-read only assemblies (n2 = 20 x 2 x 2 = 80):• Flye: we ran Flye (https://github.com/fenderglass/Flye) with the options --plasmids --meta, which have been shown to improve the assemblies of plasmids in bacterial genomes (see: https://github.com/rrwick/Long-read-assembler-comparison) • Pilon: the Flye assemblies were then polished with Illumina short-reads using Pilon (https://github.com/broadinstitute/pilon). Assembly file names have the following format: ${sample-name}_${preparation-strategy}_${long-read-sequencing}.fastae.g. for sample CFT073 the filtered PacBio-Illumina assembly is: CFT073_filtered_pacbio.fasta Also included are assemblies produced after subsampling long-read data to ~10X genome coverage for the following strategies: "basic" (hybrid) and long-read ("flye" and "pilon"). There are n3 = 20 x 3 x 2 = 120 of these assemblies. These have a '10X' preceding the preparation strategy. The total number of assemblies is n1+n2+n3=158+80+120=358. See the associated preprint for more details: https://doi.org/10.1101/530824
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国近海地形数据集(渤海,黄海,东海,南海)

本数据集包含历年来通过收集和实测方法取得的中国近海水深点数据、地形图数据(ArcGIS格式),以及黄河口、莱州湾东部、辽东湾、山东南部沿海、南海部分海域的单波束、多波束水深测量数据,包括大尺度的低密度水深数据与局部高密度水深数据。

地球大数据科学工程 收录

上奇产业通

上奇产业通是依托北京上奇数字科技有限公司(简称“上奇”)自主研发的产业知识计算引擎,推出的新一代“产业情报和智能决策”SaaS账号系统。平台覆盖200余个产业链图、100万种产品、5000万家企业等,利用产业知识计算引擎的数据、算法和模型,提供产业数据和关系的一站式信息搜索、图谱绘制、内容订阅、报告生成、企业尽调、项目推荐等服务,支撑行业研究、精准招商和投资决策等。

北京国际大数据交易所 收录