five

Hybrid Enterobacteriaceae assemblies using PacBio+Illumina or ONT+Illumina sequencing|基因组组装数据集|测序技术数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
基因组组装
测序技术
下载链接:
https://figshare.com/articles/dataset/Hybrid_Enterobacteriaceae_assemblies_using_PacBio_Illumina_or_ONT_Illumina_sequencing/7649051/3
下载链接
链接失效反馈
资源简介:
Data associated with: De Maio, Shaw, et al. on behalf of the REHAB consortium (2019), Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. biorxiv 530824 Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods impact on assembly accuracy. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or from SMRT Pacific Biosciences (PacBio) sequencing platforms. This set of files includes all hybrid assemblies produced using Unicycler with different sequencing approaches and strategies. Each isolate has 8 hybrid assemblies = 4 x ONT-Illumina + 4 x PacBio-Illumina. There are a total of 158 hybrid assemblies from the full data as two assemblies did not finish (8x20 - 2 = 160 - 2 = 158). Additionally, there are Assemblies were produced from different long read preparation strategies. Hybrid assemblies with Unicycler (n1 = 158): • Basic: no filtering or correction of reads (i.e. all long reads available used for assembly). • Corrected: Long reads were error-corrected and subsampled (preferentially selecting longest reads) to 30-40x coverage using Canu (v1.5, https://github.com/marbl/canu) with default options. • Filtered: long reads were filtered using Filtlong (v0.1.1, https://github.com/rrwick/Filtlong) by using Illumina reads as an external reference for read quality and either removing 10% of the worst reads or by retaining 500Mbp in total, whichever resulted in fewer reads. We also removed reads shorter than 1kb and used the --trim and --split 250 options. • Subsampled: we randomly subsampled long reads to leave approximately 600Mbp (corresponding to a long read coverage around 100x). Long-read only assemblies (n2 = 20 x 2 x 2 = 80):• Flye: we ran Flye (https://github.com/fenderglass/Flye) with the options --plasmids --meta, which have been shown to improve the assemblies of plasmids in bacterial genomes (see: https://github.com/rrwick/Long-read-assembler-comparison) • Pilon: the Flye assemblies were then polished with Illumina short-reads using Pilon (https://github.com/broadinstitute/pilon). Assembly file names have the following format: ${sample-name}_${preparation-strategy}_${long-read-sequencing}.fastae.g. for sample CFT073 the filtered PacBio-Illumina assembly is: CFT073_filtered_pacbio.fasta Also included are assemblies produced after subsampling long-read data to ~10X genome coverage for the following strategies: "basic" (hybrid) and long-read ("flye" and "pilon"). There are n3 = 20 x 3 x 2 = 120 of these assemblies. These have a '10X' preceding the preparation strategy. The total number of assemblies is n1+n2+n3=158+80+120=358. See the associated preprint for more details: https://doi.org/10.1101/530824
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

cifar10

该数据集包含了完整的CIFAR10数据集,通过PyTorch下载并分割成.png格式的32x32图片。数据集分为三个部分:训练集(train,49,000个样本)、校准集(calibration,1,000个样本)和测试集(test,10,000个样本),每个部分按类别平衡。

huggingface 收录