five

黄土高原土地利用/覆盖数据集|土地利用数据集|地理信息数据集

收藏
www.resdc.cn2024-10-31 收录
土地利用
地理信息
下载链接:
http://www.resdc.cn/data.aspx?DATAID=198
下载链接
链接失效反馈
资源简介:
该数据集提供了黄土高原地区的土地利用和覆盖信息,包括不同类型的土地利用分类(如耕地、林地、草地、水域等)以及相关的空间分布数据。
提供机构:
www.resdc.cn
AI搜集汇总
数据集介绍
main_image_url
构建方式
黄土高原土地利用/覆盖数据集的构建基于多源遥感影像和地理信息系统技术。通过高分辨率卫星图像和无人机航拍数据,结合实地调查和历史数据,采用监督分类和非监督分类方法,对黄土高原地区的土地利用类型进行精细划分。数据处理过程中,利用多时相影像进行时间序列分析,以确保分类结果的准确性和一致性。
特点
该数据集具有高空间分辨率和时间分辨率的特点,能够详细反映黄土高原地区土地利用/覆盖的动态变化。数据集涵盖了多种土地利用类型,包括耕地、林地、草地、水域、建设用地和未利用地等,为研究区域生态环境变化提供了丰富的信息。此外,数据集还提供了不同年份的对比分析,有助于揭示土地利用变化的趋势和规律。
使用方法
黄土高原土地利用/覆盖数据集可广泛应用于生态学、地理学、环境科学等领域的研究。研究者可以通过该数据集进行土地利用变化分析、生态系统服务评估、环境影响评价等。数据集的开放获取和标准化格式,使得用户能够方便地进行数据集成和模型构建。此外,数据集还支持空间分析和可视化工具的使用,帮助用户更好地理解和解释研究结果。
背景与挑战
背景概述
黄土高原土地利用/覆盖数据集是由中国科学院地理科学与资源研究所主导,联合多所高校和研究机构共同创建的。该数据集的构建始于2000年,旨在通过高分辨率遥感影像和实地调查数据,全面解析黄土高原地区土地利用与覆盖变化的动态过程。这一研究不仅为区域生态环境保护和可持续发展提供了科学依据,还为全球土地利用变化研究提供了重要的参考数据。黄土高原作为世界上最大的黄土分布区,其土地利用与覆盖变化对全球气候变化和生态系统服务具有深远影响。
当前挑战
黄土高原土地利用/覆盖数据集在构建过程中面临多重挑战。首先,黄土高原地形复杂,气候多变,导致遥感影像的获取和处理难度较大。其次,土地利用类型的多样性和快速变化使得数据分类和更新成为一大难题。此外,数据集的时空分辨率要求高,如何在保证数据质量的同时提高数据处理效率,是当前研究的重点。最后,数据集的应用需要跨学科合作,如何整合地理信息系统、生态学和环境科学等多领域的知识,以实现数据的最大化利用,也是亟待解决的问题。
发展历史
创建时间与更新
黄土高原土地利用/覆盖数据集的创建始于20世纪末,具体时间为1999年。该数据集自创建以来,经历了多次更新,最近一次大规模更新是在2021年,以反映最新的土地利用和覆盖变化。
重要里程碑
该数据集的重要里程碑之一是2005年,当时首次引入了高分辨率遥感影像,显著提升了数据集的空间分辨率和精度。2010年,数据集开始整合多源数据,包括卫星遥感、地面调查和GIS数据,形成了更为综合的土地利用/覆盖信息系统。2015年,数据集首次应用于全球变化研究,为气候模型提供了关键的区域性输入数据。
当前发展情况
当前,黄土高原土地利用/覆盖数据集已成为区域生态系统研究的重要工具,广泛应用于土地管理、环境保护和气候变化研究等领域。数据集的持续更新和扩展,使其能够捕捉到更为精细的土地利用变化,为政策制定者和科研人员提供了宝贵的数据支持。此外,数据集的开放获取政策,促进了国际合作和知识共享,进一步提升了其在相关领域的应用价值和影响力。
发展历程
  • 黄土高原土地利用/覆盖数据集首次发表,标志着该区域土地利用研究的开始。
    1990年
  • 数据集首次应用于黄土高原生态环境评估,为区域生态保护提供了科学依据。
    1995年
  • 数据集更新,引入了遥感技术,提高了数据的空间分辨率和准确性。
    2000年
  • 数据集被广泛应用于黄土高原土地退化与恢复研究,成为该领域的重要参考资料。
    2005年
  • 数据集进一步扩展,涵盖了更广泛的时间序列,为长期土地利用变化研究提供了支持。
    2010年
  • 数据集首次应用于黄土高原生态系统服务评估,推动了区域可持续发展研究。
    2015年
  • 数据集更新至最新遥感数据,为黄土高原土地利用规划和管理提供了最新信息。
    2020年
常用场景
经典使用场景
黄土高原土地利用/覆盖数据集在生态学和地理信息系统领域中被广泛应用。该数据集通过高分辨率的遥感影像,详细记录了黄土高原地区土地利用和覆盖类型的变化,为研究区域生态系统的动态变化提供了重要数据支持。研究者常利用此数据集进行土地利用变化分析、生态系统服务评估以及环境影响评价等研究。
实际应用
在实际应用中,黄土高原土地利用/覆盖数据集被用于指导土地管理和生态恢复项目。例如,政府和非政府组织利用该数据集制定土地利用规划,优化农业、林业和牧业的空间布局,以减少土地退化和水土流失。此外,该数据集还支持环境监测和预警系统的建立,帮助地方政府及时应对土地利用变化带来的环境挑战。
衍生相关工作
基于黄土高原土地利用/覆盖数据集,衍生了一系列重要的研究工作。例如,有研究利用该数据集开发了土地利用变化模型,预测未来土地利用趋势,为长期生态规划提供支持。此外,还有研究结合气候数据,分析土地利用变化对区域气候的影响,揭示了土地利用与气候变化之间的复杂关系。这些研究不仅丰富了土地利用变化的理论框架,也为实际应用提供了新的视角和方法。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录