云浮市罗定市休(禁)渔渔民生产生活补助事项信息|渔业管理数据集|政务数据数据集
收藏Breast Cancer Dataset
该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。
github 收录
HDFS, BGL, Liberty, Thunderbird
该仓库包含四个数据集:HDFS、BGL、Liberty和Thunderbird。这些数据集用于基于日志的异常检测实验,每个数据集都提供了日志消息数量、日志序列数量、训练和测试数据中的异常数量及异常比例等详细统计信息。
github 收录
波士顿房价数据集
波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。
阿里云天池 收录
LibriSpeech
LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。
OpenDataLab 收录
Data From NSCLC-Radiomics
This collection contains images from 422 non-small cell lung cancer (NSCLC) patients. For these patients pretreatment CT scans, manual delineation by a radiation oncologist of the 3D volume of the gross tumor volume and clinical outcome data are available. This dataset refers to the Lung1 dataset of the study published in Nature Communications. In short, this publication applies a radiomic approach to computed tomography data of 1,019 patients with lung or head-and-neck cancer. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. In present analysis 440 features quantifying tumour image intensity, shape and texture, were extracted. We found that a large number of radiomic features have prognostic power in independent data sets, many of which were not identified as significant before. Radiogenomics analysis revealed that a prognostic radiomic signature, capturing intra-tumour heterogeneity, was associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. The dataset described here (Lung1) was used to build a prognostic radiomic signature. The Lung3 dataset used to investigate the association of radiomic imaging features with gene-expression profiles consisting of 89 NSCLC CT scans with outcome data can be found here: NSCLC-Radiomics-Genomics. For scientific inquiries about this dataset, please contact Dr. Hugo Aerts of the Dana-Farber Cancer Institute / Harvard Medical School (hugo_aerts@dfci.harvard.edu). More Description
DataCite Commons 收录
