five

Quarterly Labour Force Survey 2017, Quarter 2 - South Africa|劳动力调查数据集|社会经济数据集

收藏
www.datafirsttest.uct.ac.za2020-07-02 更新2025-03-24 收录
劳动力调查
社会经济
下载链接:
https://www.datafirsttest.uct.ac.za/dataportal/index.php/catalog/724
下载链接
链接失效反馈
资源简介:
Abstract --------------------------- The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa. Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Individuals Universe --------------------------- The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded. Kind of data --------------------------- Sample survey data [ssd] Sampling procedure --------------------------- The Quarterly Labour Force Survey (QLFS) uses a master sample frame which has been developed as a general-purpose household survey frame that can be used by all other Stats SA household surveys that have reasonably compatible design requirement as the QLFS. The 2013 master sample is based on information collected during the 2011 population Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the master sample since they covered the entire country and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the master sample with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current master sample (3 324) reflects an 8,0% increase in the size of the master sample compared to the previous (2007) master sample (which had 3 080 PSUs). The larger master sample of PSUs was selected to improve the precision (smaller CVs) of the QLFS estimates. The master sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are:urban, tribal and farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro. It is divided equally into four sub-groups or panels called rotation groups. The rotation groups are designed in such a way that each of these groups has the same distribution pattern as that which is observed in the whole sample. They are numbered from one (1) to four (4) and these numbers also correspond to the quarters of the year in which the sample will be rotated for the particular group. There are a number of aspects in which the 2013 version of the master sample differs from the 2007 version. In particular, the number of primary sample units increased. Mining strata were also introduced which serves to improve the efficiency of estimates relating to employment in mining. The number of geo-types was reduced from 4 to 3 while the new master sample allows for the publication of estimates of the labour market at metro level. The master sample was also adjusted Given the change in the provincial distribution of the South African population between 2001 and 2011. There was also an 8% increase in the sample size of the master sample of PSUs to improve the precision of the QLFS estimates. The sample size increased most notable in Gauteng, the Eastern Cape and KwaZulu-Natal. For more details on the differences between the two master samples please consult the section 8 (technical notes) of the QLFS 2015 Q3 release document (P0211). From the master sample frame, the QLFS takes draws exmploying a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage. The primary stratification occurred at provincial, metro/non-metro, mining and geography type while the secondary strata were created within the primary strata based on the demographic and socio-economic characteristics of the population. For each quarter of the QLFS, a ¼ of the sampled dwellings is rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. Thus, sampled dwellings are expected to remain in the sample for four consecutive quarters. It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for the next two quarters. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied). Mode of data collection --------------------------- Face-to-face [f2f]

摘要 --------------------------- 季度劳动力调查(QLFS)是由南非统计局(Stats SA)实施的一项基于家庭的抽样调查。该调查收集了居住在南非且年龄在15岁或以上的个人在劳动力市场中的活动数据。 地理覆盖范围 --------------------------- 全国覆盖 分析单元 --------------------------- 个人 总体 --------------------------- QLFS样本覆盖了南非的非机构人口,但有一个例外。唯一包含在QLFS样本中的机构子群体是工人宿舍中的个人。居住在机构内私人住宅单位的人员也被统计在内。例如,在学校校园内,应统计校长住宅和教师宿舍,因为这些是私人住宅。然而,居住在学校校园宿舍的学生则被排除在外。 数据类型 --------------------------- 样本调查数据 [ssd] 抽样程序 --------------------------- 季度劳动力调查(QLFS)采用了一种主样本框架,该框架作为一项通用家庭调查框架被开发,可用于所有其他与QLFS具有合理兼容设计要求的Stats SA家庭调查。2013年的主样本基于Stats SA在2011年进行的人口普查收集的信息。为了准备2011年的人口普查,全国被划分为103,576个统计区域(EA)。普查统计区域及其辅助信息被用作形成主样本的初级抽样单元(PSU)的框架单元或构建块,因为它们覆盖了整个国家,并具有对分层和创建PSU至关重要的其他信息。主样本中有3,324个初级抽样单元(PSU),预计样本量为约33,000个住宅单位(DU)。当前主样本中的PSU数量(3,324)比之前(2007年)的主样本(3,080 PSU)增加了8.0%。选择更大的主样本PSU是为了提高QLFS估计的精确度(较小的CV)。 主样本旨在在省级层面以及省内的大都市/非大都市层面具有代表性。在大都市内,样本进一步按地理类型分布。三种地理类型是:城市、部落和农场。这意味着,例如,在一个大都市区域内,样本代表该大都市内可能存在的不同地理类型。它被平等地分为四个子组或面板,称为轮换组。轮换组被设计成每个组都具有与整个样本相同的分布模式。它们被编号为1(1)到4,这些数字也对应于样本将轮换的特定组的年份季度。 2013版主样本与2007版主样本在多个方面存在差异。特别是,初级样本单元的数量增加。还引入了采矿层,这有助于提高与采矿就业相关的估计效率。地理类型从4个减少到3个,而新的主样本允许在大都市层面发布劳动力市场估计。鉴于2001年至2011年间南非人口在省级分布上的变化,主样本也进行了调整。主样本PSU的样本量也增加了8%,以提高QLFS估计的精确度。样本量在豪登省、东开普省和夸祖鲁-纳塔尔省增加最为显著。有关两个主样本之间差异的更多详细信息,请参阅QLFS 2015 Q3发布文档(P0211)的第8节(技术说明)。 从主样本框架中,QLFS采用分层两阶段设计进行抽样,第一阶段采用与规模成比例的概率(PPS)抽样PSU,第二阶段采用住宅单位的系统抽样。初级分层发生在省级、大都市/非大都市、采矿和地理类型,而次级分层是基于人口统计和社会经济特征在初级分层内创建的。 对于每个QLFS季度,1/4的样本住宅被轮换出样本。这些住宅由来自同一PSU或列表中下一个PSU的新住宅替代。因此,样本住宅预计将在连续四个季度内保持样本状态。应注意的是,抽样单元是住宅,观察单元是家庭。因此,如果一个家庭在样本中居住了两个季度后搬离住宅,而一个新的家庭搬入,则新的家庭将在接下来的两个季度内进行统计。如果没有家庭搬入样本住宅,该住宅将被归类为空置(或无人居住)。 数据收集方式 --------------------------- 面对面 [f2f]
提供机构:
www.datafirsttest.uct.ac.za
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

农业农作物生长全周期数据集

农业农作物生长全周期数据集通过整合农作物、农场面积、刺激类型、肥料用量、杀虫剂使用量、产量、土壤类型、季节和用水量等多维度数据,实现农业生产的精准化管理和可持续发展。

浙江大数据交易服务平台 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

THUCNews

THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。本次比赛数据集在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。提供训练数据共832471条。

github 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录