MT-PREF|机器翻译数据集|偏好分析数据集
收藏MT-Pref 数据集概述
数据集简介
MT-Pref 数据集是一个用于机器翻译(MT)的偏好数据集,旨在通过自动评估指标来模拟用户偏好。该数据集包含 18,000 个实例,涵盖 18 种语言方向,文本来源包括多个领域,时间范围为 2022 年之后。
数据集内容
- 数据来源: 数据集包含多个高质量机器翻译系统生成的翻译结果,并由专业语言学家进行句子级别的质量评估。
- 自动评估指标: 数据集提供了多种自动评估指标的评分,用于分析这些指标在恢复人类偏好方面的能力。
- 附加数据: 数据集还包括在 WMT23 和 FLORES 基准测试上训练模型的所有评估结果,以确保可重复性。
数据集链接
MT-Pref 数据集可通过以下链接获取:sardinelab/MT-pref
数据集用途
该数据集主要用于训练和评估机器翻译模型,特别是那些旨在更好地处理语言细微差别和上下文特定变化的模型。通过使用 MT-Pref 数据集进行训练,模型在 WMT23 和 FLORES 基准测试上的翻译质量显著提升。

- 1Modeling User Preferences with Automatic Metrics: Creating a High-Quality Preference Dataset for Machine Translation电信研究所, 高等技术学院, 里斯本大学, Unbabel, ELLIS里斯本单位, 卡内基梅隆大学, MICS, 中央理工-高等电力学院, 巴黎-萨克雷大学 · 2024年
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
CatMeows
该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。
huggingface 收录
UIEB, U45, LSUI
本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。
github 收录
Materials Project
材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)
OpenDataLab 收录
WideIRSTD Dataset
WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。
github 收录