five

HC3-Chinese|文本分析数据集|偏好数据集数据集

收藏
魔搭社区2025-10-10 更新2024-05-15 收录
文本分析
偏好数据集
下载链接:
https://modelscope.cn/datasets/AI-ModelScope/HC3-Chinese
下载链接
链接失效反馈
资源简介:
# Human ChatGPT Comparison Corpus (HC3) We propose the first human-ChatGPT comparison corpus, named **HC3** dataset. This dataset is introduced in our paper: - Paper: [***How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection***](https://arxiv.org/abs/2301.07597) Code, models and analysis are available on our GitHub: - GitHub: [**Chatgpt-Comparison-Detection project** 🔬](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection) # Dataset Copyright If the source datasets used in this corpus has a specific license which is stricter than CC-BY-SA, our products follow the same. If not, they follow CC-BY-SA license. See [dataset copyright](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection#dataset-copyright). # Citation Checkout this papaer [arxiv: 2301.07597](https://arxiv.org/abs/2301.07597) ``` @article{guo-etal-2023-hc3, title = "How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection", author = "Guo, Biyang and Zhang, Xin and Wang, Ziyuan and Jiang, Minqi and Nie, Jinran and Ding, Yuxuan and Yue, Jianwei and Wu, Yupeng", journal={arXiv preprint arxiv:2301.07597} year = "2023", } ```
提供机构:
maas
创建时间:
2024-05-09
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

BDD100K

数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。

OpenDataLab 收录

DIOR

“DIOR” 是用于光学遥感图像中对象检测的大规模基准数据集,该数据集由23,463图像和带有水平边界框注释的192,518对象实例组成。

OpenDataLab 收录