five

建设项目用地预审与选址意见书|土地管理数据集|建设项目数据集

收藏
福建省公共数据资源统一开放平台2024-08-23 更新2024-02-29 收录
土地管理
建设项目
下载链接:
https://data.fujian.gov.cn/#/oportal/catalog/details?catalogID=CA73C5DA84194BAFBDA88820E0AE7B8E
下载链接
链接失效反馈
资源简介:
建设项目用地预审与选址意见书
提供机构:
三明市大数据和电子政务中心
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Spatial_Navigation

这是一个专注于四个代表性任务的多模态增强数据集,这些任务需要不同程度的视觉参与和跨模态交互,包括拼图组装、空间导航、视觉搜索和图表重聚焦。

huggingface 收录

中国1千米分辨率逐日全天候地表土壤水分数据集(2003-2024)

(1、2025年5月19日对V2.0版本进行了最新更新,本次更新将数据集覆盖时段延伸至2024年年末。 2、2023年5月数据更新提示:本数据集的V2.0版本目前已经更新至2022年底,同时填补了2011年10月至2012年6月的空白时段,V2.0版本整体估算结果与V1.0原始版本相同,已下载的V1.0版本数据亦可放心使用,详情请参阅附件"2023年5月数据更新说明.pdf"。) 地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 cm3/cm3到0.056 cm3/cm3之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。

国家青藏高原科学数据中心 收录

resume-conversations-llm-training

这是一个高质量的职业对话数据集,适用于构建能够理解简历、职业和职业成长的AI。数据集以结构化的JSONL格式提供,包含关于职业发展、技术趋势和专业技能的现实问答,非常适合开发者和AI实践者用于聊天机器人、职业咨询工具或LLM微调。

huggingface 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录